John R U Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264082/publications.pdf

Version: 2024-02-01

165 papers 12,195 citations

41344 49 h-index 98 g-index

172 all docs

172 docs citations

172 times ranked

10256 citing authors

#	Article	IF	CITATIONS
1	Patterns of introduction, naturalisation, invasion, and impact differ between fleshy- and dry-fruited species of Myrtaceae. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 54, 125648.	2.7	5
2	Addressing context dependence in ecology. Trends in Ecology and Evolution, 2022, 37, 158-170.	8.7	119
3	Arthropods on imported plant products: Volumes predict general trends while contextual details enhance predictive power. Ecological Applications, 2022, , e2554.	3.8	1
4	Invasion Frameworks: a Forest Pathogen Perspective. Current Forestry Reports, 2022, 8, 74-89.	7.4	14
5	GIRAE: a generalised approach for linking the total impact of invasion to species' range, abundance and per-unit effects. Biological Invasions, 2022, 24, 3147-3167.	2.4	9
6	Contaminant organisms recorded on plant product imports to South Africa 1994–2019. Scientific Data, 2021, 8, 83.	5.3	7
7	Highly diverse and highly successful: invasive Australian acacias have not experienced genetic bottlenecks globally. Annals of Botany, 2021, 128, 149-157.	2.9	18
8	Botanical gardens as key resources and hazards for biosecurity. Biodiversity and Conservation, 2021, 30, 1929-1946.	2.6	21
9	The status of alien bamboos in South Africa. South African Journal of Botany, 2021, 138, 33-40.	2.5	5
10	Biological invasions in World Heritage Sites: current status and a proposed monitoring and reporting framework. Biodiversity and Conservation, 2020, 29, 3327-3347.	2.6	14
11	The first management of a marine invader in Africa: The importance of trials prior to setting long-term management goals. Journal of Environmental Management, 2020, 261, 110213.	7.8	5
12	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	2.4	83
13	Definitions Can Confuse: Why the "Neonative―Neologism Is Bad for Conservation. BioScience, 2020, 70, 110-111.	4.9	11
14	Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions. Global Change Biology, 2020, 26, 2449-2462.	9.5	46
15	The threats posed by the pet trade in alien terrestrial invertebrates in South Africa. Journal for Nature Conservation, 2020, 55, 125831.	1.8	15
16	Biological Invasions in South Africa: An Overview. , 2020, , 3-31.		49
17	The Role of Environmental Factors in Promoting and Limiting Biological Invasions in South Africa. , 2020, , 355-385.		19
18	Biotic Interactions as Mediators of Biological Invasions: Insights from South Africa. , 2020, , 387-427.		21

#	Article	IF	Citations
19	Analysing the Risks Posed by Biological Invasions to South Africa. , 2020, , 573-595.		18
20	The Extent and Effectiveness of Alien Plant Control Projects in South Africa., 2020, , 597-628.		15
21	The Biogeography of South African Terrestrial Plant Invasions. , 2020, , 67-96.		34
22	Potential Futures of Biological Invasions in South Africa., 2020,, 917-946.		5
23	Coordinating invasive alien species management in a biodiversity hotspot: The CAPE Invasive Alien Animals Working Group. Bothalia, 2020, 50, .	0.3	7
24	South Africa as a Donor of Naturalised and Invasive Plants to Other Parts of the World. , 2020, , 759-785.		10
25	Tall-statured grasses: a useful functional group for invasion science. Biological Invasions, 2019, 21, 37-58.	2.4	36
26	Does origin determine environmental impacts? Not for bamboos. Plants People Planet, 2019, 1, 119-128.	3.3	36
27	Global Actions for Managing Cactus Invasions. Plants, 2019, 8, 421.	3.5	17
28	A fourâ€component classification of uncertainties in biological invasions: implications for management. Ecosphere, 2019, 10, e02669.	2.2	50
29	Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. Royal Society Open Science, 2019, 6, 181577.	2.4	82
30	Alien Bamboos in South Africa: a Socio-Historical Perspective. Human Ecology, 2019, 47, 121-133.	1.4	7
31	A framework for engaging stakeholders on the management of alien species. Journal of Environmental Management, 2018, 205, 286-297.	7.8	141
32	Socioâ€economic impact classification of alien taxa (<scp>SEICAT</scp>). Methods in Ecology and Evolution, 2018, 9, 159-168.	5.2	244
33	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	5.6	52
34	The distribution and status of alien plants in a small South African town. South African Journal of Botany, 2018, 117, 71-78.	2.5	17
35	Indicators for monitoring biological invasions at a national level. Journal of Applied Ecology, 2018, 55, 2612-2620.	4.0	53
36	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	4.9	153

#	Article	IF	CITATIONS
37	A vision for global monitoring of biological invasions. Biological Conservation, 2017, 213, 295-308.	4.1	178
38	Assessing and managing the threat posed by Epipremnum aureum in South Africa. South African Journal of Botany, 2017, 109, 178-188.	2.5	8
39	Level of environmental threat posed by horticultural trade in Cactaceae. Conservation Biology, 2017, 31, 1066-1075.	4.7	21
40	Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions, 2017, 19, 3461-3469.	2.4	190
41	Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biological Invasions, 2017, 19, 3541-3555.	2.4	58
42	How do invasive species travel to and through urban environments?. Biological Invasions, 2017, 19, 3557-3570.	2.4	82
43	Reassessing the invasion of South African waters by the European shore-crab Carcinus maenas. African Journal of Marine Science, 2017, 39, 259-267.	1.1	10
44	Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa. PLoS ONE, 2017, 12, e0173340.	2.5	20
45	A proposed national strategic framework for the management of Cactaceae in South Africa. Bothalia, 2017, 47, .	0.3	34
46	The balance of trade in alien species between South Africa and the rest of Africa. Bothalia, 2017, 47, .	0.3	29
47	Grasses as invasive plants in South Africa revisited: Patterns, pathways and management. Bothalia, 2017, 47, .	0.3	31
48	Changes in the composition and distribution of alien plants in South Africa: An update from the Southern African Plant Invaders Atlas. Bothalia, 2017, 47, .	0.3	91
49	Contributions to the National Status Report on Biological Invasions in South Africa. Bothalia, 2017, 47, .	0.3	21
50	Invasion debt – quantifying future biological invasions. Diversity and Distributions, 2016, 22, 445-456.	4.1	160
51	The global distribution of bamboos: assessing correlates of introduction and invasion. AoB PLANTS, 2016, , plw078.	2.3	69
52	Border control for stowaway alien species should be prioritised based on variations in establishment debt. Journal of Environmental Management, 2016, 180, 301-309.	7.8	8
53	Ecological research and conservation management in the Cape Floristic Region between 1945 and 2015: History, current understanding and future challenges. Transactions of the Royal Society of South Africa, 2016, 71, 207-303.	1.1	44
54	Lack of human-assisted dispersal means Pueraria montana var. lobata (kudzu vine) could still be eradicated from South Africa. Biological Invasions, 2016, 18, 3119-3126.	2.4	20

#	Article	IF	CITATIONS
55	Much more give than take: South Africa as a major donor but infrequent recipient of invasive nonâ€native grasses. Global Ecology and Biogeography, 2016, 25, 679-692.	5.8	38
56	Methods and approaches for the management of arthropod border incursions. Biological Invasions, 2016, 18, 1057-1075.	2.4	37
57	Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biological Invasions, 2016, 18, 73-87.	2.4	54
58	Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa. Pedobiologia, 2016, 59, 129-174.	1.2	45
59	Genetic diversity and structure of the globally invasive tree, Paraserianthes lophantha subspecies lophantha, suggest an introduction history characterised by varying propagule pressure. Tree Genetics and Genomes, 2016, 12, 1.	1.6	7
60	A global assessment of a large monocot family highlights the need for group-specific analyses of invasiveness. AoB PLANTS, $2016, 8, \ldots$	2.3	12
61	Resolving a Prickly Situation: Involving Stakeholders in Invasive Cactus Management in South Africa. Environmental Management, 2016, 57, 998-1008.	2.7	59
62	Intentionally introduced terrestrial invertebrates: patterns, risks, and options for management. Biological Invasions, 2016, 18, 1077-1088.	2.4	30
63	The importance of pollinators and autonomous selfâ€fertilisation in the early stages of plant invasions: <i>Banksia</i> and <i>Hakea</i> (Proteaceae) as case studies. Plant Biology, 2016, 18, 124-131.	3.8	24
64	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	4.1	184
65	Plant invasions as a biogeographical assay: Vegetation biomes constrain the distribution of invasive alien species assemblages. South African Journal of Botany, 2015, 101, 24-31.	2.5	38
66	Delayed biodiversity change: no time to waste. Trends in Ecology and Evolution, 2015, 30, 375-378.	8.7	92
67	Introduced and invasive cactus species: a global review. AoB PLANTS, 2015, 7, .	2.3	129
68	Australian acacias as invasive species: lessons to be learnt from regions with long planting histories. Southern Forests, 2015, 77, 31-39.	0.7	75
69	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	4.9	202
70	Soft Touch or Heavy Hand? Legislative Approaches for Preventing Invasions: Insights from Cacti in South Africa. Invasive Plant Science and Management, 2015, 8, 307-316.	1.1	41
71	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	4.1	112
72	A tree well travelled: global genetic structure of the invasive tree <i>Acacia saligna</i> . Journal of Biogeography, 2015, 42, 305-314.	3.0	30

#	Article	IF	Citations
73	Recent discovery of small naturalised populations of Melaleuca quinquenervia (Cav.) S.T. Blake in South Africa. Biolnvasions Records, 2015, 4, 53-59.	1.1	5
74	An assessment of the information content of South African alien species databases. Bothalia, 2015, 45, .	0.3	10
75	The Chilean black urchin, Tetrapygus niger (Molina, 1782) in South Africa: gone but not forgotten. Biolnvasions Records, 2015, 4, 261-264.	1.1	6
76	unknown underworld: Understanding soil health in South Africa. South African Journal of Science, 2014, 110, 4.	0.7	7
77	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	5.6	648
78	Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global Change Biology, 2014, 20, 1527-1537.	9.5	112
79	Casuarina: biogeography and ecology of an important tree genus in a changing world. Biological Invasions, 2014, 16, 609-633.	2.4	37
80	Macroecology meets invasion ecology: performance of Australian acacias and eucalypts around the world revealed by features of their native ranges. Biological Invasions, 2014, 16, 565-576.	2.4	28
81	<i>Casuarina</i> Invasion Alters Primary Succession on Lava Flows on La Réunion Island. Biotropica, 2014, 46, 268-275.	1.6	14
82	The seed ecology of an ornamental wattle in South Africa — Why has Acacia elata not invaded a greater area?. South African Journal of Botany, 2014, 94, 40-45.	2.5	9
83	Site-specific conditions influence plant naturalization: The case of alien Proteaceae in South Africa. Acta Oecologica, 2014, 59, 62-71.	1.1	23
84	A simple, rapid methodology for developing invasive species watch lists. Biological Conservation, 2014, 179, 25-32.	4.1	51
85	Scale-area curves: a tool for understanding the ecology and distribution of invasive tree species. Biological Invasions, 2014, 16, 553-563.	2.4	15
86	A standardized set of metrics to assess and monitor tree invasions. Biological Invasions, 2014, 16, 535-551.	2.4	60
87	Incorporating risk mapping at multiple spatial scales into eradication management plans. Biological Invasions, 2014, 16, 691-703.	2.4	42
88	Casuarina cunninghamiana in the Western Cape, South Africa: Determinants of naturalisation and invasion, and options for management. South African Journal of Botany, 2014, 92, 134-146.	2.5	15
89	Melaleuca parvistaminea Byrnes (Myrtaceae) in South Africa: Invasion risk and feasibility of eradication. South African Journal of Botany, 2014, 94, 24-32.	2.5	20
90	Biological invasions in the Cape Floristic Region: history, current patterns, impacts, and management challenges., 2014,, 273-298.		11

#	Article	IF	Citations
91	Montpellier broom (Genista monspessulana) and Spanish broom (Spartium junceum) in South Africa: An assessment of invasiveness and options for management. South African Journal of Botany, 2013, 87, 134-145.	2.5	22
92	Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Annals of Botany, 2013, 111, 895-904.	2.9	19
93	Coâ€invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. Journal of Biogeography, 2013, 40, 1240-1251.	3.0	81
94	The absence of fire can cause a lag phase: The invasion dynamics of <i><scp>B</scp>anksia ericifolia</i> (<scp>P</scp> roteaceae). Austral Ecology, 2013, 38, 931-941.	1.5	31
95	Globalization Effects on Common Plant Species. , 2013, , 700-706.		14
96	Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha. BMC Ecology, 2013, 13, 37.	3.0	20
97	new national unit for invasive species detection, assessment and eradication planning. South African Journal of Science, 2013, 109, 13.	0.7	96
98	Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS, 2013, 5, plt042-plt042.	2.3	87
99	Different Traits Determine Introduction, Naturalization and Invasion Success In Woody Plants: Proteaceae as a Test Case. PLoS ONE, 2013, 8, e75078.	2.5	85
100	Management history determines gene flow in a prominent invader. Ecography, 2013, 36, 1032-1041.	4.5	9
101	Distribution and management of Acacia implexa (Benth.) in South Africa: A suitable target for eradication?. South African Journal of Botany, 2012, 83, 23-35.	2.5	27
102	Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. South African Journal of Botany, 2012, 81, 81-94.	2.5	74
103	Cultivation shapes genetic novelty in a globally important invader. Molecular Ecology, 2012, 21, 3187-3199.	3.9	34
104	Native and naturalized range size in <i>Pinus</i> : relative importance of biogeography, introduction effort and species traits. Global Ecology and Biogeography, 2012, 21, 513-523.	5.8	70
105	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	8.7	1,762
106	Phylogeographic consequences of different introduction histories of invasive Australian <i>Acacia</i> species and <i>Paraserianthes lophantha</i> (Fabaceae) in South Africa. Diversity and Distributions, 2011, 17, 861-871.	4.1	79
107	Nationalâ€scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Diversity and Distributions, 2011, 17, 1060-1075.	4.1	157
108	Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness. Diversity and Distributions, 2011, 17, 872-883.	4.1	62

#	Article	IF	Citations
109	Reproductive biology of Australian acacias: important mediator of invasiveness?. Diversity and Distributions, 2011, 17, 911-933.	4.1	148
110	Contain or eradicate? Optimizing the management goal for Australian acacia invasions in the face of uncertainty. Diversity and Distributions, 2011, 17, 1047-1059.	4.1	63
111	Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Diversity and Distributions, 2011, 17, 1030-1046.	4.1	165
112	Predicting the subspecific identity of invasive species using distribution models: <i>Acacia saligna</i> as an example. Diversity and Distributions, 2011, 17, 1001-1014.	4.1	66
113	Humanâ€mediated introductions of Australian acacias – a global experiment in biogeography. Diversity and Distributions, 2011, 17, 771-787.	4.1	245
114	Widespread plant species: natives versus aliens in our changing world. Biological Invasions, 2011, 13, 1931-1944.	2.4	70
115	Molecular systematics and ecology of invasive Kangaroo Paws in South Africa: management implications for a horticulturally important genus. Biological Invasions, 2010, 12, 3989-4002.	2.4	22
116	Initiating dialogue between scientists and managers of biological invasions. Biological Invasions, 2010, 12, 4077-4083.	2.4	34
117	Potential impact and non-target effects of Gallerucida bifasciata (Coleoptera: Chrysomelidae), a candidate biological control agent for Fallopia japonica. Biological Control, 2010, 53, 319-324.	3.0	7
118	Alien invaders and reptile traders: what drives the live animal trade in South Africa?. Animal Conservation, 2010, 13, 24-32.	2.9	47
119	Evaluating the invasiveness of Acacia paradoxa in South Africa. South African Journal of Botany, 2009, 75, 485-496.	2.5	46
120	Something in the way you move: dispersal pathways affect invasion success. Trends in Ecology and Evolution, 2009, 24, 136-144.	8.7	680
121	Biogeographic concepts define invasion biology. Trends in Ecology and Evolution, 2009, 24, 586-586.	8.7	29
122	Ornamental Plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa. Environmental Management, 2008, 41, 32-51.	2.7	153
123	Herbivores, but not other insects, are scarce on alien plants. Austral Ecology, 2008, 33, 691-700.	1.5	49
124	Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters, 2008, 11, 1047-1053.	6.4	102
125	Adaptive evolution in invasive species. Trends in Plant Science, 2008, 13, 288-294.	8.8	724
126	Plant Diversity in the Human Diet: Weak Phylogenetic Signal Indicates Breadth. BioScience, 2008, 58, 151-159.	4.9	31

#	Article	IF	CITATIONS
127	The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp Aquatic Botany, 2007, 87, 90-93.	1.6	7 3
128	Herbivory, mowing, and herbicides differently affect production and nutrient allocation of Alternanthera philoxeroides. Aquatic Botany, 2007, 86, 62-68.	1.6	35
129	The (bio)diversity of science reflects the interests of society. Frontiers in Ecology and the Environment, 2007, 5, 409-414.	4.0	48
130	Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions, 2007, 13, 11-22.	4.1	295
131	Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography, 2007, 17, 070909153804002-???.	5.8	93
132	Invasive alien plants infiltrate bird-mediated shrub nucleation processes in arid savanna. Journal of Ecology, 2007, 95, 648-661.	4.0	73
133	Rapid response to shoot removal by the invasive wetland plant, alligator weed (Alternanthera) Tj ETQq1 1 0.78431	14 rgBT /C 4.2	verlock 10 43
134	The (bio)diversity of science reflects the interests of society. Frontiers in Ecology and the Environment, 2007, 5, 409.	4.0	45
135	INTERACTIONS BETWEEN ENVIRONMENT, SPECIES TRAITS, AND HUMAN USES DESCRIBE PATTERNS OF PLANT INVASIONS. Ecology, 2006, 87, 1755-1769.	3.2	272
136	Refining the process of agent selection through understanding plant demography and plant response to herbivory. Australian Journal of Entomology, 2006, 45, 308-316.	1.1	55
137	How much evolutionary history in a 10×10 m plot?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1143-1148.	2.6	46
138	Landscape Corridors: Possible Dangers?. Science, 2005, 310, 779-783.	12.6	38
139	Determinants and patterns of population growth in water hyacinth. Aquatic Botany, 2005, 81, 51-67.	1.6	128
140	Prediction (Pre- and Post-Border)., 0,, 19-51.		0
141	Detection and Delimitation. , 0, , 52-79.		O
142	Evaluation of Management Options. , 0, , 80-110.		0
143	Legislation and Agreements. , 0, , 139-168.		О
144	Improving Darwin Core for research and management of alien species. Biodiversity Information Science and Standards, 0, 3, .	0.0	30

#	Article	IF	CITATIONS
145	Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions. NeoBiota, 0, 20, 31-48.	1.0	16
146	Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota, 0, 30, 75-90.	1.0	32
147	Confronting the wicked problem of managing biological invasions. NeoBiota, 0, 31, 63-86.	1.0	114
148	Biological invasions and natural colonisations are different – the need for invasion science. NeoBiota, 0, 31, 87-98.	1.0	41
149	Quantifying errors and omissions in alien species lists: The introduction status of Melaleuca species in South Africa as a case study. NeoBiota, 0, 32, 89-105.	1.0	21
150	Even well-studied groups of alien species might be poorly inventoried: Australian Acacia species in South Africa as a case study. NeoBiota, 0, 39, 1-29.	1.0	31
151	Global environmental and socio-economic impacts of selected alien grasses as a basis for ranking threats to South Africa. NeoBiota, 0, 41, 19-65.	1.0	13
152	Prioritising potential incursions for contingency planning: pathways, species, and sites in Durban (eThekwini), South Africa as an example. NeoBiota, 0, 47, 1-21.	1.0	5
153	A workflow for standardising and integrating alien species distribution data. NeoBiota, 0, 59, 39-59.	1.0	31
154	Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota, 0, 61, 65-116.	1.0	72
155	A framework to support alien species regulation: the Risk Analysis for Alien Taxa (RAAT). NeoBiota, 0, 62, 213-239.	1.0	31
156	Identifying safe cultivars of invasive plants: six questions for risk assessment, management, and communication. NeoBiota, 0, 62, 81-97.	1.0	7
157	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
158	Classifying the introduction pathways of alien species: are we moving in the right direction?. NeoBiota, 0, 62, 143-159.	1.0	29
159	The Convention on Biological Diversity (CBD)'s Post-2020 target on invasive alien species – what should it include and how should it be monitored?. NeoBiota, 0, 62, 99-121.	1.0	48
160	Frameworks used in invasion science: progress and prospects. NeoBiota, 0, 62, 1-30.	1.0	20
161	Invasive Organisms Information: A proposed TDWG Task Group. Biodiversity Information Science and Standards, 0, 1, e20266.	0.0	0
162	Comparing the IUCN's EICAT and Red List to improve assessments of the impact of biological invasions. NeoBiota, 0, 62, 509-523.	1.0	10

#	Article	IF	CITATIONS
163	Is invasion science moving towards agreed standards? The influence of selected frameworks. NeoBiota, 0, 62, 569-590.	1.0	12
164	What is valued in conservation? A framework to compare ethical perspectives. NeoBiota, 0, 72, 45-80.	1.0	14
165	Native-alien populations—an apparent oxymoron that requires specific conservation attention. NeoBiota, 0, 74, 57-74.	1.0	9