
Ivan Matic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7262406/publications.pdf Version: 2024-02-01

Ινανι Ματις

#	Article	IF	CITATIONS
1	A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nature Protocols, 2009, 4, 698-705.	12.0	769
2	System-Wide Changes to SUMO Modifications in Response to Heat Shock. Science Signaling, 2009, 2, ra24.	3.6	415
3	Family-wide analysis of poly(ADP-ribose) polymerase activity. Nature Communications, 2014, 5, 4426.	12.8	386
4	Defining the transcriptome and proteome in three functionally different human cell lines. Molecular Systems Biology, 2010, 6, 450.	7.2	324
5	Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO Journal, 2013, 32, 1225-1237.	7.8	263
6	Site-Specific Identification of SUMO-2 Targets in Cells Reveals an Inverted SUMOylation Motif and a Hydrophobic Cluster SUMOylation Motif. Molecular Cell, 2010, 39, 641-652.	9.7	255
7	In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy. Molecular and Cellular Proteomics, 2008, 7, 132-144.	3.8	251
8	Serine ADP-Ribosylation Depends on HPF1. Molecular Cell, 2017, 65, 932-940.e6.	9.7	249
9	Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell, 2016, 167, 1636-1649.e13.	28.9	234
10	Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology, 2016, 12, 998-1000.	8.0	189
11	Proteome-Wide Identification of SUMO2 Modification Sites. Science Signaling, 2014, 7, rs2.	3.6	174
12	Serine is the major residue for ADP-ribosylation upon DNA damage. ELife, 2018, 7, .	6.0	167
13	Serine ADP-ribosylation reversal by the hydrolase ARH3. ELife, 2017, 6, .	6.0	163
14	Purification and identification of endogenous polySUMO conjugates. EMBO Reports, 2011, 12, 142-148.	4.5	155
15	Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control. Science Signaling, 2011, 4, rs4.	3.6	153
16	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
17	Regulation of Translesion Synthesis DNA Polymerase η by Monoubiquitination. Molecular Cell, 2010, 37, 396-407.	9.7	148
18	The Ubiquitin-Proteasome System Is a Key Component of the SUMO-2/3 Cycle. Molecular and Cellular Proteomics, 2008, 7, 2107-2122.	3.8	143

Ινάν Μάτις

#	Article	IF	CITATIONS
19	Processing of protein ADP-ribosylation by Nudix hydrolases. Biochemical Journal, 2015, 468, 293-301.	3.7	113
20	The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle, 2012, 11, 1142-1150.	2.6	108
21	Specificity of reversible ADP-ribosylation and regulation of cellular processes. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 64-82.	5.2	82
22	Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nature Methods, 2012, 9, 771-772.	19.0	79
23	Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Molecular Cell, 2015, 59, 309-320.	9.7	79
24	Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 2018, 24, 3488-3502.e5.	6.4	76
25	An HPF1/PARP1-Based Chemical Biology Strategy for Exploring ADP-Ribosylation. Cell, 2020, 183, 1086-1102.e23.	28.9	64
26	Proteome-wide identification of SUMO modification sites by mass spectrometry. Nature Protocols, 2015, 10, 1374-1388.	12.0	56
27	Mitotic post-translational modifications of histones promote chromatin compaction <i>in vitro</i> . Open Biology, 2017, 7, 170076.	3.6	56
28	Mass spectrometry for serine ADP-ribosylation? Think o-glycosylation!. Nucleic Acids Research, 2017, 45, 6259-6264.	14.5	42
29	Absolute SILAC-Compatible Expression Strain Allows Sumo-2 Copy Number Determination in Clinical Samples. Journal of Proteome Research, 2011, 10, 4869-4875.	3.7	39
30	Phosphorylation of SUMO-1 Occurs <i>in Vivo</i> and Is Conserved through Evolution. Journal of Proteome Research, 2008, 7, 4050-4057.	3.7	36
31	Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions. Journal of Biological Chemistry, 2012, 287, 44017-44026.	3.4	33
32	Proteomic-based analysis of nuclear signaling: PLCÎ ² 1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics, 2006, 6, 5725-5734.	2.2	30
33	Identification of SUMO Target Proteins by Quantitative Proteomics. Methods in Molecular Biology, 2009, 497, 19-31.	0.9	27
34	Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death and Differentiation, 2021, 28, 2957-2969.	11.2	23
35	Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. Journal of Biological Chemistry, 2016, 291, 23175-23187.	3.4	16
36	Detection and Quantitation of SUMO Chains by Mass Spectrometry. Methods in Molecular Biology, 2012, 832, 239-247.	0.9	8

#	Article	IF	CITATIONS
37	Structural basis for protein glutamylation by the Legionella pseudokinase SidJ. Nature Communications, 2021, 12, 6174.	12.8	8
38	Nonlocalized Searching of HCD Data for Fast and Sensitive Identification of ADP-Ribosylated Peptides. Methods in Molecular Biology, 2018, 1813, 255-269.	0.9	1
39	The 2021 FASEB science research conference on NAD metabolism and signaling. Aging, 2021, 13, 24924-24930.	3.1	1