
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7262123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nature Communications, 2022, 13, 2449.	12.8	13
2	Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Molecular Cell, 2021, 81, 1988-1999.e4.	9.7	18
3	A roadmap for rRNA folding and assembly during transcription. Trends in Biochemical Sciences, 2021, 46, 889-901.	7.5	32
4	Stabilization of Hfq-mediated translational repression by the co-repressor Crc in <i>Pseudomonas aeruginosa</i> . Nucleic Acids Research, 2021, 49, 7075-7087.	14.5	24
5	<scp>RNA</scp> Toxicity and Perturbation of <scp>rRNA</scp> Processing in Spinocerebellar Ataxia Type <scp>2</scp> . Movement Disorders, 2021, 36, 2519-2529.	3.9	11
6	RbfA and IF3 couple ribosome biogenesis and translation initiation to increase stress tolerance. Nucleic Acids Research, 2020, 48, 359-372.	14.5	26
7	Ribosomes clear the way for siRNA targeting. Nature Structural and Molecular Biology, 2020, 27, 775-777.	8.2	2
8	Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12080-12086.	7.1	15
9	Quantitative Analysis of RNA Chaperone Activity by Native Gel Electrophoresis and Fluorescence Spectroscopy. Methods in Molecular Biology, 2020, 2106, 19-39.	0.9	2
10	Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Research, 2019, 47, 8301-8317.	14.5	34
11	A newborn RNA switches its fate. Nature Chemical Biology, 2019, 15, 1031-1032.	8.0	3
12	Monitoring co-transcriptional folding of riboswitches through helicase unwinding. Methods in Enzymology, 2019, 623, 209-227.	1.0	2
13	<i>Caulobacter crescentus</i> Hfq structure reveals a conserved mechanism of RNA annealing regulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10978-10987.	7.1	20
14	Transcription Increases the Cooperativity of Ribonucleoprotein Assembly. Cell, 2019, 179, 1370-1381.e12.	28.9	56
15	Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1475.	6.4	155
16	A metastable rRNA junction essential for bacterial 30S biogenesis. Nucleic Acids Research, 2018, 46, 5182-5194.	14.5	13
17	The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the <i>antR</i> mRNA. Journal of Bacteriology, 2018, 200, .	2.2	43
18	Effects of Preferential Counterion Interactions on the Specificity of RNA Folding. Journal of Physical Chemistry Letters, 2018, 9, 5726-5732.	4.6	1

#	Article	IF	CITATIONS
19	The Hfq chaperone helps the ribosome mature. EMBO Journal, 2018, 37, .	7.8	6
20	Mimicking Co-Transcriptional RNA Folding Using a Superhelicase. Journal of the American Chemical Society, 2018, 140, 10067-10070.	13.7	44
21	Proteins That Chaperone RNA Regulation. Microbiology Spectrum, 2018, 6, .	3.0	59
22	Timeâ€Resolved Hydroxyl Radical Footprinting of RNA with Xâ€Rays. Current Protocols in Nucleic Acid Chemistry, 2018, 73, e52.	0.5	9
23	Metals induce transient folding and activation of the twister ribozyme. Nature Chemical Biology, 2017, 13, 1109-1114.	8.0	33
24	Probing RNA Folding Pathways by RNA Fingerprinting. Current Protocols in Nucleic Acid Chemistry, 2017, 70, 11.4.1-11.4.19.	0.5	0
25	Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes. Nature Communications, 2017, 8, 492.	12.8	30
26	Acidic C-terminal domains autoregulate the RNA chaperone Hfq. ELife, 2017, 6, .	6.0	53
27	Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods, 2016, 103, 49-56.	3.8	27
28	Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria. Journal of Molecular Biology, 2016, 428, 2259-2264.	4.2	36
29	C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6089-E6096.	7.1	92
30	Entropic stabilization of folded RNA in crowded solutions measured by SAXS. Nucleic Acids Research, 2016, 44, gkw597.	14.5	18
31	Lightâ€Triggered RNA Annealing by an RNA Chaperone. Angewandte Chemie - International Edition, 2015, 54, 7281-7284.	13.8	27
32	RNA folding retrospective: lessons from ribozymes big and small. Rna, 2015, 21, 502-503.	3.5	3
33	Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids Research, 2015, 43, 1170-1176.	14.5	23
34	Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing. Journal of Molecular Biology, 2015, 427, 3491-3500.	4.2	28
35	Charge screening in RNA: an integral route for dynamical enhancements. Soft Matter, 2015, 11, 8741-8745.	2.7	4
36	Differential effects of ribosomal proteins and Mg ²⁺ ions on a conformational switch during 30S ribosome 5′-domain assembly. Rna, 2015, 21, 1859-1865.	3.5	16

#	Article	IF	CITATIONS
37	Preface. Methods in Enzymology, 2015, 558, xix-xxi.	1.0	0
38	Fluorescence Reporters for Hfq Oligomerization and RNA Annealing. Methods in Molecular Biology, 2015, 1259, 369-383.	0.9	4
39	Positional Effects of AAN Motifs in rpoS Regulation by sRNAs and Hfq. Journal of Molecular Biology, 2014, 426, 275-285.	4.2	43
40	Protein-guided RNA dynamics during early ribosome assembly. Nature, 2014, 506, 334-338.	27.8	133
41	Increased Ribozyme Activity in Crowded Solutions. Journal of Biological Chemistry, 2014, 289, 2972-2977.	3.4	50
42	An improved surface passivation method for single-molecule studies. Nature Methods, 2014, 11, 1233-1236.	19.0	120
43	Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17134-17139.	7.1	70
44	Introductory editorial:Biopolymerscelebrates 50 years of nucleic acids research. Biopolymers, 2013, 99, n/a-n/a.	2.4	0
45	InÂVivo X-Ray Footprinting of Pre-30S Ribosomes Reveals Chaperone-Dependent Remodeling of Late Assembly Intermediates. Molecular Cell, 2013, 52, 506-516.	9.7	96
46	Crowders Perturb the Entropy of RNA Energy Landscapes to Favor Folding. Journal of the American Chemical Society, 2013, 135, 10055-10063.	13.7	49
47	Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Research, 2013, 41, 7536-7546.	14.5	105
48	Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly. Rna, 2013, 19, 574-585.	3.5	21
49	Hfq proximity and orientation controls RNA annealing. Nucleic Acids Research, 2012, 40, 8690-8697.	14.5	46
50	Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures. Nucleic Acids Research, 2012, 40, 8011-8020.	14.5	36
51	Antiproliferative small-molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4503-4508.	7.1	37
52	Assembly of the Five-Way Junction in the Ribosomal Small Subunit Using Hybrid MD-Gol Simulations. Journal of Physical Chemistry B, 2012, 116, 6819-6831.	2.6	22
53	RNase Footprinting of Protein Binding Sites on an mRNA Target of Small RNAs. Methods in Molecular Biology, 2012, 905, 213-224.	0.9	20
54	Hexamer to Monomer Equilibrium of E. coli Hfq in Solution and Its Impact on RNA Annealing. Journal of Molecular Biology, 2012, 417, 406-412.	4.2	33

#	Article	IF	CITATIONS
55	Cooperative Tertiary Interaction Network Guides RNA Folding. Cell, 2012, 149, 348-357.	28.9	88
56	RNA Folding in Crowded Solutions. Biophysical Journal, 2012, 102, 3a-4a.	0.5	0
57	Single Molecule Views of the Ribosome Assembly. Biophysical Journal, 2012, 102, 645a.	0.5	0
58	Rendering RNA in 3D. Nature Methods, 2012, 9, 552-553.	19.0	0
59	Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. Rna, 2011, 17, 1544-1550.	3.5	68
60	The RNA Chaperone Hfq Makes a Transient Ternary Complex with RNA Strands to Facilitate RNA Annealing. Biophysical Journal, 2011, 100, 231a.	0.5	0
61	The Dynamics of Unfolded versus Folded tRNA: The Role of Electrostatic Interactions. Journal of the American Chemical Society, 2011, 133, 16406-16409.	13.7	25
62	RNA Folding Pathways and the Self-Assembly of Ribosomes. Accounts of Chemical Research, 2011, 44, 1312-1319.	15.6	74
63	Slow Formation of Stable Complexes during Coincubation of Minimal rRNA and Ribosomal Protein S4. Journal of Molecular Biology, 2011, 412, 453-465.	4.2	23
64	New era of molecular structure and dynamics from solution scattering experiments. Biopolymers, 2011, 95, 503-504.	2.4	2
65	Rapid binding and release of Hfq from ternary complexes during RNA annealing. Nucleic Acids Research, 2011, 39, 5193-5202.	14.5	67
66	Positive regulation by small RNAs and the role of Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9602-9607.	7.1	253
67	Taming free energy landscapes with RNA chaperones. RNA Biology, 2010, 7, 677-686.	3.1	87
68	Molecular Crowding Stabilizes Folded RNA Structure by the Excluded Volume Effect. Journal of the American Chemical Society, 2010, 132, 8690-8696.	13.7	178
69	Multistage Collapse of a Bacterial Ribozyme Observed by Time-Resolved Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2010, 132, 10148-10154.	13.7	50
70	Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water. Biophysical Journal, 2010, 98, 1321-1326.	0.5	103
71	Compact Intermediates in RNA Folding. Annual Review of Biophysics, 2010, 39, 61-77.	10.0	176
72	A minimized rRNA-binding site for ribosomal protein S4 and its implications for 30S assembly. Nucleic Acids Research, 2009, 37, 1886-1896.	14.5	26

5

#	Article	IF	CITATIONS
73	Effect of salt and RNA structure on annealing and strand displacement by Hfq. Nucleic Acids Research, 2009, 37, 6205-6213.	14.5	40
74	S16 throws a conformational switch during assembly of 30S 5′ domain. Nature Structural and Molecular Biology, 2009, 16, 438-445.	8.2	35
75	Structural Rearrangements Linked to Global Folding Pathways of the Azoarcus Group I Ribozyme. Journal of Molecular Biology, 2009, 386, 1167-1178.	4.2	37
76	Global Stabilization of rRNA Structure by Ribosomal Proteins S4, S17, and S20. Journal of Molecular Biology, 2009, 392, 666-677.	4.2	41
77	Metal Ion Dependence of Cooperative Collapse Transitions in RNA. Journal of Molecular Biology, 2009, 393, 753-764.	4.2	86
78	Dynamics of tRNA at Different Levels of Hydration. Biophysical Journal, 2009, 96, 2755-2762.	0.5	81
79	Analysis of RNA Folding by Native Polyacrylamide Gel Electrophoresis. Methods in Enzymology, 2009, 469, 189-208.	1.0	41
80	Structural Analysis of RNA in Living Cells by In Vivo Synchrotron X-Ray Footprinting. Methods in Enzymology, 2009, 468, 239-258.	1.0	32
81	Group I Ribozymes as a Paradigm for RNA Folding and Evolution. Springer Series in Biophysics, 2009, , 145-166.	0.4	0
82	RNA folding and ribosome assembly. Current Opinion in Chemical Biology, 2008, 12, 667-673.	6.1	94
83	Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature, 2008, 455, 1268-1272.	27.8	161
84	Interactions of recombinant HMGB proteins with branched RNA substrates. Biochemical and Biophysical Research Communications, 2008, 377, 262-267.	2.1	15
85	Tertiary Interactions Determine the Accuracy of RNA Folding. Journal of the American Chemical Society, 2008, 130, 1296-1303.	13.7	92
86	The <i>rpoS</i> mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. Rna, 2008, 14, 1907-1917.	3.5	190
87	Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Research, 2007, 36, 1098-1112.	14.5	90
88	Communication Between RNA Folding Domains Revealed by Folding of Circularly Permuted Ribozymes. Journal of Molecular Biology, 2007, 373, 197-210.	4.2	12
89	Charge Density of Divalent Metal Cations Determines RNA Stability. Journal of the American Chemical Society, 2007, 129, 2676-2682.	13.7	169
90	Dynamic Transition in tRNA is Solvent Induced. Journal of the American Chemical Society, 2006, 128, 32-33.	13.7	105

6

#	Article	IF	CITATIONS
91	Counterion Charge Density Determines the Position and Plasticity of RNA Folding Transition States. Journal of Molecular Biology, 2006, 359, 446-454.	4.2	59
92	Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Research, 2006, 34, e64-e64.	14.5	69
93	Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. Rna, 2006, 12, 2149-2159.	3.5	29
94	Metal ions and RNA folding: a highly charged topic with a dynamic future. Current Opinion in Chemical Biology, 2005, 9, 104-109.	6.1	337
95	Assembly line inspection. Nature, 2005, 438, 566-567.	27.8	3
96	Structure and assembly of group I introns. Current Opinion in Structural Biology, 2005, 15, 324-330.	5.7	93
97	Persistence Length Changes Dramatically as RNA Folds. Physical Review Letters, 2005, 95, 268303.	7.8	81
98	Molecular beacons as probes of RNA unfolding under native conditions. Nucleic Acids Research, 2005, 33, 5763-5770.	14.5	28
99	Protein-independent Folding Pathway of the 16S rRNA 5′ Domain. Journal of Molecular Biology, 2005, 351, 508-519.	4.2	75
100	RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme. Journal of Molecular Biology, 2005, 353, 1199-1209.	4.2	66
101	Intracellular folding of the Tetrahymena group I intron depends on exon sequence and promoter choice. Rna, 2004, 10, 1526-1532.	3.5	32
102	Compaction of a Bacterial Group I Ribozyme Coincides with the Assembly of Core Helices. Biochemistry, 2004, 43, 1746-1753.	2.5	58
103	Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. Journal of Molecular Biology, 2004, 339, 41-51.	4.2	56
104	Folding of the Tetrahymena Ribozyme by Polyamines: Importance of Counterion Valence and Size. Journal of Molecular Biology, 2004, 341, 27-36.	4.2	65
105	Cycling of the Sm-like Protein Hfq on the DsrA Small Regulatory RNA. Journal of Molecular Biology, 2004, 344, 1211-1223.	4.2	177
106	EXPERIMENTAL APPROACHES TO RNA FOLDING. , 2004, , .		1
107	Perturbed Folding Kinetics of Circularly Permuted RNAs with Altered Topology. Journal of Molecular Biology, 2003, 328, 385-394.	4.2	31
108	Structural Requirement for Mg2+ Binding in the Group I Intron Core. Journal of Molecular Biology, 2003, 329, 229-238.	4.2	79

#	Article	IF	CITATIONS
109	Effect of transcription on folding of the Tetrahymena ribozyme. Rna, 2003, 9, 722-733.	3.5	96
110	Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1574-1579.	7.1	136
111	Distribution of rRNA Introns in the Three-dimensional Structure of the Ribosome. Journal of Molecular Biology, 2002, 323, 35-52.	4.2	58
112	Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. Journal of Molecular Biology, 2001, 306, 1157-1166.	4.2	179
113	Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics. Journal of Molecular Biology, 2001, 309, 57-68.	4.2	114
114	EARLY EVENTS IN RNA FOLDING. Annual Review of Physical Chemistry, 2001, 52, 751-762.	10.8	195
115	Timeâ€Resolved Hydroxyl Radical Footprinting of RNA with Xâ€Rays. Current Protocols in Nucleic Acid Chemistry, 2001, 6, Unit 11.6.	0.5	3
116	[22] Time-resolved synchrotron X-ray footprinting and its application to RNA folding. Methods in Enzymology, 2000, 317, 353-368.	1.0	72
117	Compact but disordered states of RNA. , 2000, 7, 349-352.		38
118	Maximizing RNA folding rates: A balancing act. Rna, 2000, 6, 790-794.	3.5	46
119	Refolding of rRNA exons enhances dissociation of the Tetrahymena intron. Rna, 2000, 6, 1248-1256.	3.5	25
120	Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA 1 1Edited by I. Tinoco. Journal of Molecular Biology, 2000, 296, 133-144.	4.2	100
121	Probing RNA Folding Pathways by RNA Fingerprinting. Current Protocols in Nucleic Acid Chemistry, 2000, 2, Unit 11.4.	0.5	3
122	Folding Mechanism of the Tetrahymena Ribozyme P4â^'P6 Domain. Biochemistry, 2000, 39, 10975-10985.	2.5	91
123	Multiple Folding Pathways for the P4â^'P6 RNA Domain. Biochemistry, 2000, 39, 12465-12475.	2.5	91
124	Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. Rna, 1999, 5, 1-13.	3.5	37
125	The RNA World, second edition, edited by Raymond F. Gesteland, Thomas R. Cech, and John F. Atkins. 1999. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. Hardcover, 709 pp. \$129 Rna, 1999, 5, 1133-1134.	3.5	1
126	Magnesium-dependent folding of self-splicing RNA: Exploring the link between cooperativity, thermodynamics, and kinetics. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6149-6154.	7.1	91

#	Article	IF	CITATIONS
127	Facilitation of Group I Splicing in Vivo: Misfolding of the Tetrahymena IVS and the Role of Ribosomal RNA Exons. Journal of Molecular Biology, 1999, 292, 557-567.	4.2	39
128	The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA. Journal of Molecular Biology, 1999, 294, 955-965.	4.2	69
129	Structure and dynamics of ribosomal RNA. Current Opinion in Structural Biology, 1998, 8, 294-300.	5.7	17
130	Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. Journal of Molecular Biology, 1998, 280, 597-609.	4.2	197
131	RNA Folding at Millisecond Intervals by Synchrotron Hydroxyl Radical Footprinting. Science, 1998, 279, 1940-1943.	12.6	378
132	[19] Following the folding of RNA with time-resolved synchrotron X-ray footprinting. Methods in Enzymology, 1998, 295, 379-402.	1.0	74
133	Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5′ exon of the Tetrahymena pre-rRNA. Rna, 1998, 4, 901-914.	3.5	30
134	Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2134-2139.	7.1	63
135	Time-resolved synchrotron X-ray "footprintingâ€; a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding 1 1 Edited by D. E. Draper. Journal of Molecular Biology, 1997, 266, 144-159.	4.2	174
136	Folding of RNA involves parallel pathways. Journal of Molecular Biology, 1997, 273, 7-13.	4.2	192
137	Examining the conformational dynamics of macromolecules with time-resolved synchrotron X-ray â€ ⁻ footprinting'. Structure, 1997, 5, 865-869.	3.3	46
138	Analysis of Rate-Determining Conformational Changes during Self-Splicing of theTetrahymenaIntronâ€. Biochemistry, 1996, 35, 13469-13477.	2.5	40
139	Macromolecular complexes: How RNA and protein get together. Current Biology, 1996, 6, 23-25.	3.9	4
140	Requirements for self-splicing of a group I intron fromPhysarum polycephalum. Nucleic Acids Research, 1994, 22, 4315-4320.	14.5	12
141	Fingerprinting the folding of a group I precursor RNA Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9675-9679.	7.1	67
142	A highly sensitive probe for guanine N7 in folded structures of RNA: application to tRNAPhe and Tetrahymena group l intron. Biochemistry, 1993, 32, 7610-7616.	2.5	56
143	Self-splicing of the Tetrahymena pre-rRNA is decreased by misfolding during transcription. Biochemistry, 1993, 32, 14062-14067.	2.5	59
144	A primer extension assay for modification of guanine by Ni(ll) complexes. Nucleic Acids Research, 1993, 21, 5524-5525.	14.5	39

#	Article	IF	CITATIONS
145	Exon sequence distant from the splic junction are required fo0r efficient self-splicing of the Tetrahymena IVA. Nucleic Acids Research, 1992, 20, 4027-4032.	14.5	36
146	Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry, 1991, 30, 2042-2050.	2.5	89
147	Symposium 3: Non-enzymatic biocatalysts in nature and biotechnology. Fresenius' Journal of Analytical Chemistry, 1990, 337, 12-14.	1.5	0
148	Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers, 1989, 28, 1149-1177.	2.4	35
149	Reverse self-splicing of the tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell, 1989, 57, 335-345.	28.9	198
150	DNA sequence specificity of mitomycin cross-linking. Biochemistry, 1989, 28, 3901-3907.	2.5	92
151	Binding of 9-aminoacridine to bulged-base DNA oligomers from a frame-shift hot spot. Biochemistry, 1988, 27, 8904-8914.	2.5	53
152	Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimization. Biochemistry, 1988, 27, 3130-3141.	2.5	100
153	Preferential location of bulged guanosine internal to a G.cntdot.C tract by proton NMR. Biochemistry, 1988, 27, 436-445.	2.5	46
154	Proton nuclear magnetic resonance studies on bulge-containing DNA oligonucleotides from a mutational hot-spot sequence. Biochemistry, 1987, 26, 904-912.	2.5	72
155	Stereochemistry in trivalent nitrogen compounds. 39. Configurational biasing of tertiary amide ionophores by alkali metal chelation. Journal of the American Chemical Society, 1983, 105, 7252-7255.	13.7	7

156 Proteins That Chaperone RNA Regulation., 0, , 383-397.

7