Ricardo Hueso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7261641/publications.pdf

Version: 2024-02-01

147 papers 4,798 citations

38 h-index 61 g-index

183 all docs

183 docs citations

times ranked

183

2915 citing authors

#	Article	IF	CITATIONS
1	Evolution of protoplanetary disks: constraints from DMÂTauri and GMÂAurigae. Astronomy and Astrophysics, 2005, 442, 703-725.	5.1	239
2	Mars 2020 Mission Overview. Space Science Reviews, 2020, 216, 1.	8.1	239
3	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	27.8	179
4	Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 2007, 55, 1653-1672.	1.7	155
5	The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 367, L47-L51.	3.3	122
6	Variable winds on Venus mapped in three dimensions. Geophysical Research Letters, 2008, 35, .	4.0	119
7	Methane storms on Saturn's moon Titan. Nature, 2006, 442, 428-431.	27.8	112
8	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
9	Deep winds beneath Saturn's upper clouds from a seasonal long-lived planetary-scale storm. Nature, 2011, 475, 71-74.	27.8	98
10	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
11	A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 2007, 450, 641-645.	27.8	95
12	Saturn's zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 2011, 215, 62-74.	2.5	88
13	Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature, 2008, 451, 437-440.	27.8	82
14	Thermal Structure and Dynamics of Saturn's Northern Springtime Disturbance. Science, 2011, 332, 1413-1417.	12.6	75
15	A strong decrease in Saturn's equatorial jet at cloud level. Nature, 2003, 423, 623-625.	27.8	74
16	Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planetary and Space Science, 2015, 113-114, 78-99.	1.7	69
17	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	1.7	69
18	Assessing the long-term variability of Venus winds at cloud level from VIRTIS–Venus Express. Icarus, 2012, 217, 585-598.	2.5	67

#	Article	IF	Citations
19	A reanalysis of Venus winds at two cloud levels from Galileo SSI images. Icarus, 2007, 190, 469-477.	2.5	60
20	Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEXâ€VIRTIS images. Journal of Geophysical Research, 2008, 113, .	3. 3	60
21	Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation. American Journal of Physics, 2004, 72, 767-774.	0.7	57
22	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	8.1	57
23	The jovian anticyclone BAII. Circulation and interaction with the zonal jets. Icarus, 2009, 203, 499-515.	2.5	54
24	A three-dimensional model of moist convection for the giant planets II: Saturn's water and ammonia moist convective storms. Icarus, 2004, 172, 255-271.	2.5	52
25	Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. Journal of Geophysical Research, 2008, 113, .	3.3	52
26	A Three-Dimensional Model of Moist Convection for the Giant Planets: The Jupiter Case. Icarus, 2001, 151, 257-274.	2.5	51
27	Distribution of the O ₂ infrared nightglow observed with VIRTIS on board Venus Express. Geophysical Research Letters, 2008, 35, .	4.0	50
28	Scientific rationale for Saturn×3s in situ exploration. Planetary and Space Science, 2014, 104, 29-47.	1.7	49
29	THE IMPACT OF A LARGE OBJECT ON JUPITER IN 2009 JULY. Astrophysical Journal Letters, 2010, 715, L155-L159.	8.3	47
30	Instrumental methods for professional and amateur collaborations in planetary astronomy. Experimental Astronomy, 2014, 38, 91-191.	3.7	47
31	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
32	A strong vortex in Saturn's South Pole. Icarus, 2006, 184, 524-531.	2.5	46
33	Saturn's cloud morphology and zonal winds before the Cassini encounter. Icarus, 2004, 170, 519-523.	2.5	45
34	The longâ€ŧerm steady motion of Saturn's hexagon and the stability of its enclosed jet stream under seasonal changes. Geophysical Research Letters, 2014, 41, 1425-1431.	4.0	43
35	The international outer planets watch atmospheres node database of giant-planet images. Planetary and Space Science, 2010, 58, 1152-1159.	1.7	40
36	Dynamics of Saturn's polar regions. Journal of Geophysical Research E: Planets, 2015, 120, 155-176.	3.6	40

#	Article	IF	CITATIONS
37	A model for large-scale convective storms in Jupiter. Journal of Geophysical Research, 2002, 107, 5-1.	3. 3	39
38	Episodic bright and dark spots on Uranus. Icarus, 2012, 220, 6-22.	2.5	39
39	Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	1.7	39
40	The three-dimensional structure of Saturn's equatorial jet at cloud level. Icarus, 2007, 187, 510-519.	2.5	37
41	The Planetary Laboratory for Image Analysis (PLIA). Advances in Space Research, 2010, 46, 1120-1138.	2.6	37
42	Interaction of Jovian White Ovals BC and DE in 1998 from Earth-Based Observations in the Visual Range. Icarus, 1999, 142, 116-124.	2.5	36
43	JUPITER AFTER THE 2009 IMPACT: <i>HUBBLE SPACE TELESCOPE</i> IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION. Astrophysical Journal Letters, 2010, 715, L150-L154.	8.3	36
44	Ground-based observations of the long-term evolution and death of Saturn's 2010 Great White Spot. Icarus, 2012, 220, 561-576.	2.5	36
45	Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover. Scientific Reports, 2018, 8, 17576.	3.3	36
46	A planetaryâ€scale disturbance in the most intense Jovian atmospheric jet from JunoCam and groundâ€based observations. Geophysical Research Letters, 2017, 44, 4679-4686.	4.0	35
47	Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 2017, 1, .	10.1	35
48	A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data. Icarus, 2018, 299, 308-330.	2.5	33
49	A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 2013, 6, 254-257.	12.9	32
50	Jupiter's polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 2008, 194, 173-185.	2.5	31
51	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
52	The jovian anticyclone BAIII. Aerosol properties and color change. Icarus, 2009, 203, 516-530.	2.5	29
53	The atmospheric influence, size and possible asteroidal nature of the July 2009 Jupiter impactor. Icarus, 2011, 211, 587-602.	2.5	29
54	Impact flux on Jupiter: From superbolides to large-scale collisions. Astronomy and Astrophysics, 2013, 560, A55.	5.1	29

#	Article	IF	CITATIONS
55	Giant Planet Observations with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018005.	3.1	29
56	FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER. Astrophysical Journal Letters, 2010, 721, L129-L133.	8.3	28
57	Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus, 2012, 220, 958-970.	2.5	28
58	VESPA: A community-driven Virtual Observatory in Planetary Science. Planetary and Space Science, 2018, 150, 65-85.	1.7	28
59	The jovian anticyclone BAI. Motions and interaction with the GRS from observations and non-linear simulations. Icarus, 2009, 203, 486-498.	2.5	26
60	Atmospheric dynamics of Saturn's 2010 giant storm. Nature Geoscience, 2013, 6, 525-529.	12.9	26
61	The Hera Saturn entry probe mission. Planetary and Space Science, 2016, 130, 80-103.	1.7	26
62	The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA). Planetary and Space Science, 2018, 150, 22-35.	1.7	25
63	Analysis of Neptune's 2017 bright equatorial storm. Icarus, 2019, 321, 324-345.	2.5	25
64	Dynamics of Jupiter's equatorial region at cloud top level from Cassini and HST images. Icarus, 2011, 211, 1242-1257.	2.5	24
65	<i>PlanetCam UPV/EHU</i> : A Two-channel Lucky Imaging Camera for Solar System Studies in the Spectral Range 0.38–1.7 <i>μ</i> m. Publications of the Astronomical Society of the Pacific, 2016, 128, 035002.	3.1	23
66	Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express. Icarus, 2018, 299, 194-205.	2.5	23
67	Cloud brightness distribution and turbulence in Venus using Galileo violet images. Icarus, 2007, 188, 305-314.	2.5	22
68	A New Dark Vortex on Neptune. Astronomical Journal, 2018, 155, 117.	4.7	22
69	Atmospheric Dynamics and Vertical Structure of Uranus and Neptune's Weather Layers. Space Science Reviews, 2019, 215, 1.	8.1	22
70	Strong increase in dust devil activity at Gale crater on the third year of the MSL mission and suppression during the 2018 Global Dust Storm. Icarus, 2020, 347, 113814.	2.5	22
71	An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure. Nature Communications, 2016, 7, 13262.	12.8	21
72	Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus, 2017, 295, 89-109.	2.5	21

#	Article	IF	CITATIONS
73	Jupiter cloud morphology and zonal winds from groundâ€based observations before and during Juno's first perijove. Geophysical Research Letters, 2017, 44, 4669-4678.	4.0	21
74	Nightside Winds at the Lower Clouds of Venus with Akatsuki/IR2: Longitudinal, Local Time, and Decadal Variations from Comparison with Previous Measurements. Astrophysical Journal, Supplement Series, 2018, 239, 29.	7.7	21
7 5	Numerical models of Saturn's long-lived anticyclones. Icarus, 2007, 191, 665-677.	2.5	20
76	A strong high altitude narrow jet detected at Saturn's equator. Geophysical Research Letters, 2010, 37,	4.0	20
77	The Rich Dynamics of Jupiter's Great Red Spot from JunoCam: Juno Images. Astronomical Journal, 2018, 156, 162.	4.7	19
78	Vertical shears in Saturn's eastward jets at cloud level. Icarus, 2009, 201, 818-820.	2.5	18
79	Gravity waves in Jupiter's equatorial clouds observed by the Galileo orbiter. Icarus, 2009, 202, 358-360.	2.5	18
80	Instantaneous three-dimensional thermal structure of the South Polar Vortex of Venus. Icarus, 2015, 245, 16-31.	2.5	18
81	Venus's winds and temperatures during the MESSENGER's flyby: An approximation to a threeâ€dimensional instantaneous state of the atmosphere. Geophysical Research Letters, 2017, 44, 3907-3915.	4.0	18
82	Small impacts on the giant planet Jupiter. Astronomy and Astrophysics, 2018, 617, A68.	5.1	18
83	Long-Term Evolution of Comet SL-9 Impact Features: July 1994–September 1996. Icarus, 1998, 131, 341-357.	2.5	17
84	A long-lived cyclone in Saturn's atmosphere: Observations and models. Icarus, 2010, 209, 665-681.	2.5	17
85	Jupiter's Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM. Astronomical Journal, 2018, 156, 67.	4.7	17
86	A Longâ€Lived Sharp Disruption on the Lower Clouds of Venus. Geophysical Research Letters, 2020, 47, e2020GL087221.	4.0	17
87	Dynamics and Interaction between a Large-Scale Vortex and the Great Red Spot in Jupiter. Icarus, 1998, 136, 14-26.	2.5	16
88	The Aula EspaZio Gela and the Master of Space Science and Technology in the Universidad del PaÃs Vasco (University of the Basque Country). European Journal of Engineering Education, 2014, 39, 518-526.	2.3	16
89	VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION (sup>â^—. Astrophysical Journal Letters, 2016, 833, L7.	8.3	16
90	The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.	3.6	16

#	Article	IF	CITATIONS
91	Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008. Journal of Geophysical Research E: Planets, 2013, 118, 2537-2557.	3.6	15
92	Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter's South Temperate Belt. Icarus, 2020, 336, 113475.	2.5	15
93	Jupiter's zonal winds and their variability studied with small-size telescopes. Astronomy and Astrophysics, 2013, 554, A74.	5.1	14
94	A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere. lcarus, 2018, 302, 499-513.	2.5	14
95	A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths. Astronomical Journal, 2018, 156, 79.	4.7	14
96	A system of circumpolar waves in Jupiter's stratosphere. Geophysical Research Letters, 1998, 25, 4043-4046.	4.0	13
97	Evolution of the Protosolar Nebula and Formation of the Giant Planets. Space Science Reviews, 2003, 106, 105-120.	8.1	13
98	Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter. Icarus, 2011, 214, 462-476.	2.5	13
99	Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure. Planetary and Space Science, 2018, 150, 50-59.	1.7	13
100	Saturn atmospheric dynamics one year after Cassini: Long-lived features and time variations in the drift of the Hexagon. Icarus, 2020, 336, 113429.	2.5	13
101	A complex storm system in Saturn's north polar atmosphere in 2018. Nature Astronomy, 2020, 4, 180-187.	10.1	13
102	Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to $1.7 < i > \hat{1}^1/4 < /i > m$ with PlanetCam-UPV/EHU. Astronomy and Astrophysics, 2017, 607, A72.	5.1	13
103	The 2018 Martian Global Dust Storm Over the South Polar Region Studied With MEx/VMC. Geophysical Research Letters, 2019, 46, 10330-10337.	4.0	12
104	Jupiter's Great Red Spot: Strong Interactions With Incoming Anticyclones in 2019. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006686.	3.6	12
105	A model of scattered thermal radiation for Venus from 3 to. Planetary and Space Science, 2013, 81, 65-73.	1.7	11
106	A Seasonally Recurrent Annular Cyclone in Mars Northern Latitudes and Observations of a Companion Vortex. Journal of Geophysical Research E: Planets, 2018, 123, 3020-3034.	3.6	11
107	Convective storms and atmospheric vertical structure in Uranus and Neptune. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190476.	3.4	11
108	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	8.1	11

#	Article	IF	Citations
109	Motions in Jovian Hot Spot–Plume Regions Using Voyager Images. Icarus, 1998, 136, 353-357.	2.5	10
110	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Experimental Astronomy, 2009, 23, 947-976.	3.7	10
111	A daylight experiment for teaching stellar interferometry. American Journal of Physics, 2014, 82, 649-653.	0.7	10
112	Morphology and Dynamics of Venus's Middle Clouds With Akatsuki/IR1. Geophysical Research Letters, 2019, 46, 2399-2407.	4.0	10
113	Meteorological pressure at Gale crater from a comparison of REMS/MSL data and MCD modelling: Effect of dust storms. Icarus, 2019, 317, 591-609.	2.5	10
114	Spatial distribution of jovian clouds, hazes and colors from Cassini ISS multi-spectral images. Icarus, 2016, 267, 34-50.	2.5	9
115	Characterization of a local dust storm on Mars with REMS/MSL measurements and MARCI/MRO images. Icarus, 2020, 338, 113521.	2.5	9
116	An Extremely Elongated Cloud Over Arsia Mons Volcano on Mars: I. Life Cycle. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006517.	3.6	9
117	Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations. Astronomy and Astrophysics, 2022, 659, A136.	5.1	8
118	A theoretical study of parcel stability and cloud distribution in a Jovian hot spot. Planetary and Space Science, 1999, 47, 1263-1275.	1.7	7
119	Limb imaging of the Venus O ₂ visible nightglow with the Venus Monitoring Camera. Geophysical Research Letters, 2013, 40, 2539-2543.	4.0	7
120	Virtual European Solar & Data Science Journal, 2020, 19, .	1.3	7
121	Potential vorticity of the south polar vortex of Venus. Journal of Geophysical Research E: Planets, 2016, 121, 574-593.	3.6	6
122	Multilayer hazes over Saturn's hexagon from Cassini ISS limb images. Nature Communications, 2020, 11, 2281.	12.8	6
123	Fragmentation modelling of the 2019 August impact on Jupiter. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4622-4630.	4.4	6
124	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
125	A Longâ€Term Study of Mars Mesospheric Clouds Seen at Twilight Based on Mars Express VMC Images. Geophysical Research Letters, 2021, 48, e2020GL092188.	4.0	5
126	In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.	3.7	5

#	Article	IF	CITATIONS
127	Convective storms in closed cyclones in Jupiter's South Temperate Belt: (I) observations. Icarus, 2022, 380, 114994.	2.5	5
128	PlanetCam UPV/EHU: a simultaneous visible and near infrared lucky-imaging camera to study solar system objects. , 2012, , .		4
129	Midsummer Atmospheric Changes in Saturn's Northern Hemisphere from the Hubble OPAL Program. Planetary Science Journal, 2021, 2, 47.	3.6	4
130	Jupiter's third largest and longest-lived oval: Color changes and dynamics. Icarus, 2021, 361, 114394.	2.5	4
131	Ice giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	3.7	4
132	Interferometry of binary stars using polymer optical fibres. European Journal of Physics, 2017, 38, 045704.	0.6	3
133	Evolution of a dark vortex on Neptune with transient secondary features. Icarus, 2022, 387, 115123.	2.5	3
134	An Overview of Saturn's Equatorial Storms: 1990 - 1997. Astrophysics and Space Science, 1998, 263, 351-354.	1.4	2
135	Detectability of possible space weather effects on Mars upper atmosphere and meteor impacts in Jupiter and Saturn with small telescopes. Journal of Space Weather and Space Climate, 2018, 8, A57.	3.3	2
136	Convective storms in closed cyclones in Jupiter: (II) numerical modeling. Icarus, 2022, 386, 115169.	2.5	2
137	Interaction of Saturn's Hexagon With Convective Storms. Geophysical Research Letters, 2021, 48, e2021GL092461.	4.0	1
138	MOIST CONVECTIVE STORMS IN THE ATMOSPHERES OF JUPITER AND SATURN Atmospheric storms in Jupiter and Saturn. , 2006, , 211-220.		1
139	Evolution of the Protosolar Nebula and Formation of the Giant Planets. Space Sciences Series of ISSI, 2003, , 105-120.	0.0	1
140	Venus Cloud Winds and Mean Albedo Variability From Atmospheric Waves. Journal of Geophysical Research E: Planets, 2019, 124, 2681-2685.	3.6	0
141	Observations of Interactions between Giant Vortices in the Atmosphere of Jupiter: 1997–2000. , 2001, , 261-264.		0
142	Constraining Theory and Modelling of Protoplanetary Discs. , 2003, , 281-284.		0
143	The Role of Large Scale Jovian Storms in the Energy Balance of Jupiter. , 2003, , 369-372.		0
144	Dynamics and Clouds in Jupiter Equatorial Zone. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 449-449.	0.3	0

#	Article	IF	CITATIONS
145	Venus Spectrophotometry During the MESSENGER Mission Fly-By. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 455-455.	0.3	O
146	Teaching stellar interferometry with polymer optical fibers. , 2017, , .		0
147	Two Years of Saturn's Exploration by the Cassini Spacecraft: Atmospheric Studies. , 2007, , 303-310.		O