Tony Heitkam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7261524/publications.pdf

Version: 2024-02-01

687363 713466 28 526 13 21 citations h-index g-index papers 34 34 34 573 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics, 2018, 34, 3575-3577.	4.1	60
2	Adding color to a centuryâ€old enigma: multiâ€color chromosome identification unravels the autotriploid nature of saffron (<i>Crocus sativus</i>) as a hybrid of wild <i>Crocus cartwrightianus</i> cytotypes. New Phytologist, 2019, 222, 1965-1980.	7. 3	47
3	The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Research, 2010, 18, 247-263.	2.2	37
4	Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA, 2013, 4, 8.	3.6	36
5	ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinformatics, 2022, 23, 40.	2.6	36
6	Profiling of extensively diversified plant <scp>LINE</scp> s reveals distinct plantâ€specific subclades. Plant Journal, 2014, 79, 385-397.	5.7	35
7	Satellite DNA landscapes after allotetraploidization of quinoa (<i>Chenopodium quinoa</i>) reveal unique A and B subgenomes. Plant Journal, 2020, 103, 32-52.	5.7	29
8	TE-Tracker: systematic identification of transposition events through whole-genome resequencing. BMC Bioinformatics, 2014, 15, 377.	2.6	27
9	Evolutionary reshuffling in the Errantivirus lineage Elbe within the <i>Beta vulgaris</i> genome. Plant Journal, 2012, 72, 636-651.	5.7	26
10	A comparative analysis of two conserved motifs in bacterial poly(A) polymerase and CCA-adding enzyme. Nucleic Acids Research, 2008, 36, 5212-5220.	14.5	25
11	Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe's oldest Camellia japonica. Chromosome Research, 2015, 23, 791-806.	2.2	24
12	BNR – a LINE family from <i>Beta vulgaris</i> à€" contains a RRM domain in open reading frame 1 and defines a L1 subâ€clade present in diverse plant genomes. Plant Journal, 2009, 59, 872-882.	5.7	23
13	Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (<i>Beta vulgaris</i>). Annals of Botany, 2021, 128, 281-299.	2.9	17
14	The diversification and activity of hAT transposons in Musa genomes. Chromosome Research, 2014, 22, 559-571.	2.2	14
15	The Cassandra retrotransposon landscape in sugar beet (<i>Beta vulgaris</i>) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. Annals of Botany, 2021, 127, 91-109.	2.9	13
16	TE Hub: A community-oriented space for sharing and connecting tools, data, resources, and methods for transposable element annotation. Mobile DNA, 2021, 12, 16.	3.6	13
17	Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes, 2020, 11, 527.	2.4	10
18	Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics, 2022, 23, 113.	2.8	10

#	Article	IF	CITATIONS
19	Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Communications Biology, 2022, 5, .	4.4	10
20	The conserved 3′ Angioâ€domain defines a superfamily of short interspersed nuclear elements (SINEs) in higher plants. Plant Journal, 2020, 101, 681-699.	5.7	8
21	Comparative Repeat Profiling of Two Closely Related Conifers (Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Frontiers in Genetics, 2021, 12, 683668.	2.3	7
22	Divergence of 3′ ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae. Plant Journal, 2020, 103, 443-458.	5.7	6
23	Ancient Artworks and Crocus Genetics Both Support Saffron's Origin in Early Greece. Frontiers in Plant Science, 2022, 13, 834416.	3.6	6
24	Application of retrotransposon-based Inter-SINE Amplified Polymorphism (ISAP) markers for the differentiation of common poplar genotypes. Canadian Journal of Forest Research, 0, , .	1.7	2
25	Genome-wide analysis of long terminal repeat retrotransposons from the cranberry Vaccinium macrocarpon. Journal of Berry Research, 2022, 12, 165-185.	1.4	2
26	Balancing Retrospection and Visions: The Cytogenetics Group of the Society of Plant Breeding (GPZ) Came Together in Dresden. Cytogenetic and Genome Research, 2019, 159, 163-168.	1.1	0
27	Can we have it all? Repurposing target capture for repeat genomics. A commentary on: †Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNAâ€. Annals of Botany, 2021, 128, iii-v.	2.9	0
28	The function of two conserved elements in the bacterial Poly(A)Polymerase and CCA-adding enzyme., 0, 2008, .		0