
Vittorio Scardaci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260860/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, 97, 187401.	7.8	12,689
2	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	31.5	5,431
3	Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotechnology, 2008, 3, 738-742.	31.5	596
4	Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures. Nano Letters, 2006, 6, 1107-1112.	9.1	297
5	Spray Deposition of Highly Transparent, Lowâ€Resistance Networks of Silver Nanowires over Large Areas. Small, 2011, 7, 2621-2628.	10.0	282
6	Transparent, Flexible, and Highly Conductive Thin Films Based on Polymerâ `Nanotube Composites. ACS Nano, 2009, 3, 714-720.	14.6	271
7	Photoluminescence Spectroscopy of Carbon Nanotube Bundles: Evidence for Exciton Energy Transfer. Physical Review Letters, 2007, 99, 137402.	7.8	181
8	The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon, 2009, 47, 2466-2473.	10.3	165
9	Stabilization and "Debundling―of Single-Wall Carbon Nanotube Dispersions in <i>N</i> -Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C, 2007, 111, 12594-12602.	3.1	158
10	Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers. Advanced Materials, 2008, 20, 4040-4043.	21.0	148
11	Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials, 2020, 10, 2317.	4.1	140
12	Very thin transparent, conductive carbon nanotube films on flexible substrates. Applied Physics Letters, 2010, 97, .	3.3	120
13	Femtonewton Force Sensing with Optically Trapped Nanotubes. Nano Letters, 2008, 8, 3211-3216.	9.1	118
14	Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Applied Physics Letters, 2006, 89, 231115.	3.3	91
15	Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sensors and Actuators B: Chemical, 2013, 188, 571-575.	7.8	77
16	Characterization of carbon nanotube–thermotropic nematic liquid crystal composites. Journal Physics D: Applied Physics, 2008, 41, 125106.	2.8	50
17	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotubeâ°'Polymer Composites. Journal of Physical Chemistry C, 2008, 112, 20227-20232.	3.1	45
18	Carbon nanotube–polymer composites for photonic devices. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 115-118.	2.7	44

VITTORIO SCARDACI

#	Article	IF	CITATIONS
19	Solution-processed two-dimensional materials for ultrafast fiber lasers (invited). Nanophotonics, 2020, 9, 2169-2189.	6.0	43
20	Generation of ultra-fast laser pulses using nanotube mode-lockers. Physica Status Solidi (B): Basic Research, 2006, 243, 3551-3555.	1.5	40
21	Raman Spectroscopy Investigation of Graphene Oxide Reduction by Laser Scribing. Journal of Carbon Research, 2021, 7, 48.	2.7	39
22	Optical trapping of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2347-2351.	2.7	36
23	Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Au Nanorod Ordered Arrays. Journal of Physical Chemistry C, 2014, 118, 13260-13267.	3.1	36
24	Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2352-2359.	2.7	33
25	Carbon nanotubes for ultrafast photonics. Physica Status Solidi (B): Basic Research, 2007, 244, 4303-4307.	1.5	29
26	Plasmon sensing and enhancement of laser prepared silver colloidal nanoplates. Applied Surface Science, 2019, 475, 633-638.	6.1	25
27	Hysteresis suppression in self-assembled single-wall nanotube field effect transistors. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2278-2282.	2.7	23
28	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. Advanced Functional Materials, 2021, 31, 2107363.	14.9	23
29	Passively Q-switched Yb-doped all-fiber laser based on Ag nanoplates as saturable absorber. Nanophotonics, 2020, 9, 3873-3880.	6.0	22
30	Soliton fiber laser modeâ€locked by a singleâ€wall carbon nanotubeâ€polymer composite. Physica Status Solidi (B): Basic Research, 2008, 245, 2319-2322.	1.5	21
31	Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2414-2418.	2.7	19
32	Growth Kinetics and Sensing Features of Colloidal Silver Nanoplates. Journal of Nanomaterials, 2019, 2019, 1-8.	2.7	16
33	Nonlinear Optical Properties of Ag Nanoplates Plasmon Resonance and Applications in Ultrafast Photonics. Journal of Lightwave Technology, 2021, 39, 2084-2090.	4.6	16
34	Monochromatic light driven synthesis and growth of flat silver nanoparticles and their plasmon sensitivity. Journal of Materials Chemistry C, 2020, 8, 9734-9741.	5.5	13
35	Laser Synthesized Graphene and Its Applications. Applied Sciences (Switzerland), 2021, 11, 6304.	2.5	10
36	Reduction of Graphene Oxide by Laser Scribing in Different Atmospheres and Application in Humidity Sensing. Journal of Nanomaterials, 2020, 2020, 1-7.	2.7	9

VITTORIO SCARDACI

#	Article	IF	CITATIONS
37	Surface Plasmon Resonance Dependent Third-Order Optical Nonlinearities of Silver Nanoplates. Photonics, 2021, 8, 299.	2.0	9
38	Copper Nanowires for Transparent Electrodes: Properties, Challenges and Applications. Applied Sciences (Switzerland), 2021, 11, 8035.	2.5	9
39	Raman spectroscopy data related to the laser induced reduction of graphene oxide. Data in Brief, 2021, 38, 107306.	1.0	9
40	Silver nanoplates paved PMMA cuvettes as a cheap and re-usable plasmonic sensing device. Applied Surface Science, 2021, 566, 150701.	6.1	9
41	Anisotropic Silver Nanomaterials by Photochemical Reactions: Synthesis and Applications. Nanomaterials, 2021, 11, 2226.	4.1	7
42	Fast One-Step Synthesis of Anisotropic Silver Nanoparticles. Applied Sciences (Switzerland), 2021, 11, 8949.	2.5	7
43	Carbon Nanotube network based sensors. , 2012, , .		2
44	Advanced waveguide lasers fabricated by femtosecond laser writing in an Er:Yb-doped phosphate glass. , 2007, , .		1
45	Spray deposition of Silver Nanowire transparent conductive networks. , 2012, , .		1
46	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics (Adv. Funct. Mater. 49/2021). Advanced Functional Materials, 2021, 31, 2170364.	14.9	1
47	Passively Q-switched Yb-doped fiber laser based on Ag nanoplates saturable absorber. EPJ Web of Conferences, 2020, 243, 14004.	0.3	Ο