
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cellular and Molecular Neurobiology, 2022, 42, 225-242.	3.3	15
2	Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. Journal of Nanobiotechnology, 2022, 20, 67.	9.1	17
3	Significance of native PLCA nanoparticles in the treatment of Alzheimer's disease pathology. Bioactive Materials, 2022, 17, 506-525.	15.6	12
4	Implications of exosomes derived from cholesterol-accumulated astrocytes in Alzheimer's disease pathology. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	10
5	Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioactive Materials, 2021, 6, 4491-4505.	15.6	19
6	Effects of Specific Inhibitors for CaMK1D on a Primary Neuron Model for Alzheimer's Disease. Molecules, 2021, 26, 7669.	3.8	4
7	Significance of cytosolic cathepsin D in Alzheimer's disease pathology: Protective cellular effects of PLCA nanoparticles against βâ€amyloidâ€ŧoxicity. Neuropathology and Applied Neurobiology, 2020, 46, 686-706.	3.2	14
8	Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chemico-Biological Interactions, 2019, 304, 139-147.	4.0	22
9	Kainate Receptor Activation Enhances Amyloidogenic Processing of APP in Astrocytes. Molecular Neurobiology, 2019, 56, 5095-5110.	4.0	8
10	A role for astrocyteâ€derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathology, 2019, 29, 28-44.	4.1	20
11	The Effects of N-terminal Mutations on β-amyloid Peptide Aggregation and Toxicity. Neuroscience, 2018, 379, 177-188.	2.3	20
12	Endosomal-Lysosomal Cholesterol Sequestration by U18666A Differentially Regulates Amyloid Precursor Protein (APP) Metabolism in Normal and APP-Overexpressing Cells. Molecular and Cellular Biology, 2018, 38, .	2.3	10
13	The Effects of Extracellular Serum Concentration on APP Processing in Npc1-Deficient APP-Overexpressing N2a Cells. Molecular Neurobiology, 2018, 55, 5757-5766.	4.0	2
14	Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Molecular Neurobiology, 2017, 54, 2636-2658.	4.0	41
15	Effects of cholesterol transport inhibitor U18666A on APP metabolism in rat primary astrocytes. Glia, 2017, 65, 1728-1743.	4.9	14
16	The Effect of Aβ ₁₋₄₂ Oligomers on APP Processing and Aβ ₁₋₄₀ Generation in Cultured U-373 Astrocytes. Neurodegenerative Diseases, 2015, 15, 361-368.	1.4	16
17	Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability. Molecular and Cellular Biology, 2015, 35, 2368-2384.	2.3	17
18	APP overexpression in the absence of NPC1 exacerbates metabolism of amyloidogenic proteins of Alzheimer's disease. Human Molecular Genetics, 2015, 24, ddv413.	2.9	22

#	Article	IF	CITATIONS
19	Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience, 2015, 284, 360-373.	2.3	16
20	Overexpression of the IGF-II/M6P Receptor in Mouse Fibroblast Cell Lines Differentially Alters Expression Profiles of Genes Involved in Alzheimer's Disease-Related Pathology. PLoS ONE, 2014, 9, e98057.	2.5	5
21	A Function for EHD Family Proteins in Unidirectional Retrograde Dendritic Transport of BACE1 and Alzheimer's Disease Aβ Production. Cell Reports, 2013, 5, 1552-1563.	6.4	65
22	Role of Cholesterol in APP Metabolism and Its Significance in Alzheimer's Disease Pathogenesis. Molecular Neurobiology, 2013, 47, 37-63.	4.0	102
23	Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of Psychiatry and Neuroscience, 2013, 38, 6-23.	2.4	247
24	Role of Cathepsin D in U18666A-induced Neuronal Cell Death. Journal of Biological Chemistry, 2013, 288, 3136-3152.	3.4	54
25	Alterations in Gene Expression in Mutant Amyloid Precursor Protein Transgenic Mice Lacking Niemann-Pick Type C1 Protein. PLoS ONE, 2013, 8, e54605.	2.5	6
26	Single-Transmembrane Domain IGF-II/M6P Receptor: Potential Interaction with G Protein and Its Association with Cholesterol-Rich Membrane Domains. Endocrinology, 2012, 153, 4784-4798.	2.8	6
27	Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a β-cyclodextrin. Human Molecular Genetics, 2012, 21, 4857-4875.	2.9	35
28	Inhibition of β-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons. Neuroscience, 2011, 178, 181-188.	2.3	28
29	Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemannâ€Pick type C1â€deficient mouse brains. Glia, 2010, 58, 1267-1281.	4.9	43
30	β-Amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices. Neurobiology of Aging, 2010, 31, 1164-1172.	3.1	50
31	Leu27 insulin-like growth factor-II, an insulin-like growth factor-II analog, attenuates depolarization-evoked GABA release from adult rat hippocampal and cortical slices. Neuroscience, 2010, 170, 722-730.	2.3	12
32	Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP+PS1 transgenic mouse brains. Neurobiology of Aging, 2009, 30, 54-70.	3.1	22
33	Increased Activity and Altered Subcellular Distribution of Lysosomal Enzymes Determine Neuronal Vulnerability in Niemann-Pick Type C1-Deficient Mice. American Journal of Pathology, 2009, 175, 2540-2556.	3.8	74
34	Memantine protects rat cortical cultured neurons against βâ€amyloidâ€induced toxicity by attenuating tau phosphorylation. European Journal of Neuroscience, 2008, 28, 1989-2002.	2.6	125
35	Localization and regional distribution of p23/TMP21 in the brain. Neurobiology of Disease, 2008, 32, 37-49.	4.4	27
36	Cellular distribution of γ-secretase subunit nicastrin in the developing and adult rat brains. Neurobiology of Aging, 2008, 29, 724-738.	3.1	13

#	Article	IF	CITATIONS
37	Role of calpain and caspase in β-amyloid-induced cell death in rat primary septal cultured neurons. Neuropharmacology, 2008, 54, 721-733.	4.1	38
38	Internalization of β-Amyloid Peptide by Primary Neurons in the Absence of Apolipoprotein E. Journal of Biological Chemistry, 2007, 282, 35722-35732.	3.4	112
39	Analysis of Receptor Localization in the Central Nervous System Using In Vitro and In Vivo Receptor Autoradiography. , 2007, , 275-292.		О
40	Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Research, 2007, 1131, 77-87.	2.2	15
41	Heterotrimeric G Proteins and the Single-Transmembrane Domain IGF-II/M6P Receptor: Functional Interaction and Relevance to Cell Signaling. Molecular Neurobiology, 2007, 35, 329-345.	4.0	18
42	Up-Regulation of Cation-Independent Mannose 6-Phosphate Receptor and Endosomal-Lysosomal Markers in Surviving Neurons after 192-IgG-Saporin Administrations into the Adult Rat Brain. American Journal of Pathology, 2006, 169, 1140-1154.	3.8	18
43	Cellular distribution of insulin-like growth factor-II/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology. Neurobiology of Aging, 2006, 27, 199-210.	3.1	37
44	Birth insults involving hypoxia produce long-term increases in hippocampal [1251]insulin-like growth factor-I and -II receptor binding in the rat. Neuroscience, 2006, 139, 451-462.	2.3	6
45	Single Transmembrane Domain Insulin-Like Growth Factor-II/Mannose-6-Phosphate Receptor Regulates Central Cholinergic Function by Activating a G-Protein-Sensitive, Protein Kinase C-Dependent Pathway. Journal of Neuroscience, 2006, 26, 585-596.	3.6	79
46	Selective loss of basal forebrain cholinergic neurons by 192 IgG-saporin is associated with decreased phosphorylation of Ser9 glycogen synthase kinase-31². Journal of Neurochemistry, 2005, 95, 263-272.	3.9	25
47	Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. European Journal of Neuroscience, 2005, 21, 2649-2659.	2.6	88
48	Amyloid β peptides and central cholinergic neurons: functional interrelationship and relevance to Alzheimer's disease pathology. Progress in Brain Research, 2004, 145, 261-274.	1.4	31
49	The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Research Reviews, 2004, 44, 117-140.	9.0	133
50	Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer's disease. Journal of Psychiatry and Neuroscience, 2004, 29, 427-41.	2.4	242
51	Insulin-like growth factor-II/mannose-6-phosphate receptor: Widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. Journal of Comparative Neurology, 2003, 458, 113-127.	1.6	60
52	Insulin-Like Growth Factor-1–Induced Phosphorylation of Transcription Factor FKHRL1 Is Mediated by Phosphatidylinositol 3-Kinase/Akt Kinase and Role of This Pathway in Insulin-Like Growth Factor-1–Induced Survival of Cultured Hippocampal Neurons. Molecular Pharmacology, 2002, 62, 225-233.	2.3	155
53	Object Recognition Memory and Cholinergic Parameters in Mice Expressing Human Presenilin 1 Transgenes. Experimental Neurology, 2002, 175, 398-406.	4.1	28
54	Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 2002, 115, 201-211.	2.3	296

#	Article	IF	CITATIONS
55	Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal formation: possible involvement of GABA in mediating the effects. Neuroscience, 2002, 115, 603-612.	2.3	39
56	Role of amyloid ? peptides in the regulation of central cholinergic function and its relevance to Alzheimer's disease pathology. Drug Development Research, 2002, 56, 248-263.	2.9	11
57	Insulin-like growth factor-II/Mannose-6-phosphate receptor in the spinal cord and dorsal root ganglia of the adult rat. European Journal of Neuroscience, 2002, 15, 33-39.	2.6	11
58	Amyloid β peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and -unimpaired rats. Journal of Chemical Neuroanatomy, 2001, 21, 323-329.	2.1	47
59	Effects of amyloid peptides on cell viability and expression of neuropeptides in cultured rat dorsal root ganglion neurons: a role for free radicals and protein kinase C. European Journal of Neuroscience, 2001, 13, 1125-1135.	2.6	15
60	Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and Alzheimer disease brains. Synapse, 2000, 38, 450-459.	1.2	55
61	Effects of voluntary ethanol drinking on [1251]insulin-like growth factor-I, [1251]insulin-like growth factor-II and [1251]insulin receptor binding in the mouse hippocampus and cerebellum. Neuroscience, 2000, 98, 687-695.	2.3	6
62	Protective and Rescuing Abilities of IGF-I and Some Putative Free Radical Scavengers against beta-Amyloid-Inducing Toxicity in Neurons. Annals of the New York Academy of Sciences, 1999, 890, 356-364.	3.8	45
63	Impact of neonatal kainate treatment on hippocampal insulin-like growth factor receptors. Neuroscience, 1999, 91, 1035-1043.	2.3	10
64	Autoradiographic Localization of Growth Factor Receptors in Neuronal Tissues. Current Protocols in Pharmacology, 1998, 3, 8.2.1.	4.0	0
65	Amyloid βâ€Peptide Inhibits Highâ€Affinity Choline Uptake and Acetylcholine Release in Rat Hippocampal Slices. Journal of Neurochemistry, 1998, 70, 2179-2187.	3.9	151
66	Discussion. Trends in Neurosciences, 1997, 20, 326-331.	8.6	185
67	Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation. Neuroscience, 1997, 80, 1041-1055.	2.3	42
68	Insulin-like growth factors-I and -II differentially regulate endogenous acetylcholine release from the rat hippocampal formation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14054-14059.	7.1	92
69	Evidence for direct and indirect mechanisms in the potent modulatory action of interleukinâ€⊋ on the release of acetylcholine in rat hippocampal slices. British Journal of Pharmacology, 1997, 120, 1151-1157.	5.4	40
70	Distribution and levels of insulin-like growth factor (IGF-I and IGF-II) and insulin receptor binding sites in the spinal cords of amyotrophic lateral sclerosis (ALS) patients. Molecular Brain Research, 1996, 41, 128-133.	2.3	59
71	Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. Journal of Neuroscience, 1996, 16, 1034-1040.	3.6	130
72	Autoradiographical and immunohistochemical analysis of receptor localization in the central nervous system. The Histochemical Journal, 1996, 28, 729-745.	0.6	7

#	Article	IF	CITATIONS
73	Neuropeptide receptors in developing and adult rat spinal cord: An in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, ?-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors. Journal of Comparative Neurology, 1995, 354, 253-281.	1.6	87
74	Altered Calcitonin Gene-related Peptide, Substance P and Enkephalin Immunoreactivities and Receptor Binding Sites in the Dorsal Spinal Cord of the Polyarthritic Rat. European Journal of Neuroscience, 1994, 6, 345-354.	2.6	57
75	Galanin Receptor Binding Sites in Adult Rat Spinal Cord Respond Differentially to Neonatal Capsaicin, Dorsal Rhizotomy and Peripheral Axotomy. European Journal of Neuroscience, 1994, 6, 1917-1921.	2.6	33
76	An interaction between inositol hexakisphosphate (IP6) and insulin-like growth factor II receptor binding sites in the rat brain. NeuroReport, 1994, 5, 625-628.	1.2	19
77	Quantitative autoradiographic localization of [¹²⁵ 1]insulinâ€ŀike growth factor I, [¹²⁵ 1]insulinâ€ŀike growth factor II, and [¹²⁵ 1]insulin receptor binding sites in developing and adult rat brain. Journal of Comparative Neurology, 1993, 333, 375-397.	1.6	203
78	Autoradiographic localization of [125I-TYR8]-bradykinin receptor binding sites in the guinea pig spinal cord. Synapse, 1993, 15, 48-57.	1.2	27
79	Entorhinal cortex lesion induces differential responses in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in the rat hippocampal formation. Neuroscience, 1993, 55, 69-80.	2.3	60
80	Quantitative autoradiographic localization of [125I] neuropeptide Y receptor binding sites in rat spinal cord and the effects of neonatal capsaicin, dorsal rhizotomy and peripheral axotomy. Brain Research, 1992, 574, 333-337.	2.2	57
81	Quantitative autoradiographic localisation of [1251]endothelin-1 binding sites in spinal cord and dorsal root ganglia of the rat. Neuroscience Letters, 1991, 133, 117-120.	2.1	32