

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258963/publications.pdf Version: 2024-02-01

VUE HU

#	Article	IF	CITATIONS
1	Series Resistance Modulation for Largeâ€Area Fully Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100554.	3.1	13
2	Highly oriented MAPbI3 crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells. Fundamental Research, 2022, 2, 276-283.	1.6	40
3	Minimizing the Voltage Loss in Holeâ€Conductorâ€Free Printable Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	41
4	Halogen Bond Involved Postâ€Treatment for Improved Performance of Printable Holeâ€Conductorâ€Free Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100851.	3.1	14
5	Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science, 2022, 13, 2167-2183.	3.7	37
6	Selfâ€Assembled Epitaxial Ferroelectric Oxide Nanospring with Superâ€Scalability. Advanced Materials, 2022, 34, e2108419.	11.1	11
7	Unveiling the effect of amino acids on the crystallization pathways of methylammonium lead iodide perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	7.1	10
8	In Situ Formation of δ-FAPbI ₃ at the Perovskite/Carbon Interface for Enhanced Photovoltage of Printable Mesoscopic Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 728-735.	3.2	24
9	Interfacial Energy Band Alignment Enables the Reduction of Potential Loss for Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 2144-2149.	2.1	10
10	Cl-Assisted Perovskite Crystallization Pathway in the Confined Space of Mesoporous Metal Oxides Unveiled by In Situ Grazing Incidence Wide-Angle X-ray Scattering. Chemistry of Materials, 2022, 34, 2231-2237.	3.2	9
11	Passivating the interface between halide perovskite and SnO2 by capsaicin to accelerate charge transfer and retard recombination. Applied Physics Letters, 2022, 120, .	1.5	4
12	Yttriumâ€doped <scp>Sn₃O₄ twoâ€dimensional</scp> electron transport material for perovskite solar cells with efficiency over 23%. EcoMat, 2022, 4, .	6.8	16
13	Oxygen Vacancy Management for Highâ€Temperature Mesoporous SnO ₂ Electron Transport Layers in Printable Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
14	Selfâ€Assembled Epitaxial Ferroelectric Oxide Nanospring with Superâ€Scalability (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	11.1	0
15	Oxygen Vacancy Management for Highâ€Temperature Mesoporous SnO ₂ Electron Transport Layers in Printable Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3
16	Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. Advanced Materials, 2022, 34, e2200720.	11.1	50
17	Modeling and Balancing the Solvent Evaporation of Thermal Annealing Process for Metal Halide Perovskites and Solar Cells. Small Methods, 2022, 6, e2200161.	4.6	2
18	A multifunctional piperidine-based modulator for printable mesoscopic perovskite solar cells. Chemical Engineering Journal, 2022, 446, 136967.	6.6	13

#	Article	IF	CITATIONS
19	SnO2 modified mesoporous ZrO2 as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells. Applied Physics Letters, 2022, 120, .	1.5	6
20	Precise Tuning of Skyrmion Density in a Controllable Manner by Ion Irradiation. ACS Applied Materials & Interfaces, 2022, 14, 34011-34019.	4.0	8
21	Trivalent Europium Ions Doped CsPbBr ₃ for Highly Efficient and Stable Printable Mesoscopic Perovskite Solar Cells and Driving Water Electrolysis. Solar Rrl, 2022, 6, .	3.1	6
22	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	19.8	342
23	A 2D Model for Interfacial Recombination in Mesoscopic Perovskite Solar Cells with Printed Back Contact. Solar Rrl, 2021, 5, 2000595.	3.1	19
24	A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008621.	7.8	143
25	Ultraflexible and Malleable Fe/BaTiO ₃ Multiferroic Heterostructures for Functional Devices. Advanced Functional Materials, 2021, 31, 2009376.	7.8	30
26	Pure organic quinacridone dyes as dual sensitizers in tandem photoelectrochemical cells for unassisted total water splitting. Chemical Communications, 2021, 57, 5634-5637.	2.2	7
27	Enhanced efficiency of printable mesoscopic perovskite solar cells using ionic liquid additives. Chemical Communications, 2021, 57, 4027-4030.	2.2	16
28	Investigating the iodide and bromide ion exchange in metal halide perovskite single crystals and thin films. Chemical Communications, 2021, 57, 6125-6128.	2.2	7
29	A novel method to synthesize BiSI uniformly coated with rGO by chemical bonding and its application as a supercapacitor electrode material. Journal of Materials Chemistry A, 2021, 9, 15452-15461.	5.2	15
30	Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2′-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window. Chemical Communications, 2021, 57, 3099-3102.	2.2	14
31	Improving Holeâ€Conductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells' Performance with Enhanced Openâ€Circuit Voltage via the Octyltrimethylammonium Chloride Additive. Solar Rrl, 2021, 5, 2000825.	3.1	6
32	Improving the Performance of Perovskite Solar Cells via a Novel Additive of <i>N</i> ,1â€Fluoroformamidinium Iodide with Electronâ€Withdrawing Fluorine Group. Advanced Functional Materials, 2021, 31, 2010603.	7.8	37
33	Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Typeâ€II Band Alignment and Enhanced Performance of Printable Hole onductorâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100292.	10.2	85
34	Multiferroic Heterostructures: Ultraflexible and Malleable Fe/BaTiO ₃ Multiferroic Heterostructures for Functional Devices (Adv. Funct. Mater. 16/2021). Advanced Functional Materials, 2021, 31, 2170111.	7.8	1
35	Revealing the Role of Bifunctional Molecules in Crystallizing Methylammonium Lead Iodide through Geometric Isomers. Chemistry of Materials, 2021, 33, 4014-4022.	3.2	10
36	First-Principles Insights into the Stability Difference between ABX ₃ Halide Perovskites and Their A ₂ BX ₆ Variants. Journal of Physical Chemistry C, 2021, 125, 9688-9694.	1.5	36

#	Article	IF	CITATIONS
37	Celluloseâ€Based Oxygenâ€Rich Activated Carbon for Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100333.	3.1	16
38	Enhanced perovskite electronic properties via A-site cation engineering. Fundamental Research, 2021, 1, 385-392.	1.6	34
39	Modulating Oxygen Vacancies in BaSnO ₃ for Printable Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11032-11040.	2.5	17
40	Simultaneous Improvement of the Power Conversion Efficiency and Stability of Perovskite Solar Cells by Doping PMMA Polymer in Spiroâ€OMeTADâ€Based Holeâ€Transporting Layer. Solar Rrl, 2021, 5, 2100408.	3.1	14
41	Aiming at the industrialization of perovskite solar cells: Coping with stability challenge. Applied Physics Letters, 2021, 119, .	1.5	3
42	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
43	Progress in Multifunctional Molecules for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900248.	3.1	13
44	<i>In situ</i> transfer of CH ₃ NH ₃ PbI ₃ single crystals in mesoporous scaffolds for efficient perovskite solar cells. Chemical Science, 2020, 11, 474-481.	3.7	19
45	Quinacridone-pyridine dicarboxylic acid based donor–acceptor supramolecular nanobelts for significantly enhanced photocatalytic hydrogen production. Journal of Materials Chemistry C, 2020, 8, 930-934.	2.7	14
46	Crystallization Control of Ternary ation Perovskite Absorber in Tripleâ€Mesoscopic Layer for Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 1903092.	10.2	63
47	Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule, 2020, 4, 2646-2660.	11.7	218
48	Magnetotransport Mechanism of Individual Nanostructures <i>via</i> Direct Magnetoresistance Measurement <i>in situ</i> SEM. ACS Applied Materials & Interfaces, 2020, 12, 39798-39806.	4.0	1
49	Mesoporous-Carbon-Based Fully-Printable All-Inorganic Monoclinic CsPbBr ₃ Perovskite Solar Cells with Ultrastability under High Temperature and High Humidity. Journal of Physical Chemistry Letters, 2020, 11, 9689-9695.	2.1	23
50	van der Waals Mixed Valence Tin Oxides for Perovskite Solar Cells as UV-Stable Electron Transport Materials. Nano Letters, 2020, 20, 8178-8184.	4.5	26
51	Effect of π-bridge groups based on indeno[1,2- <i>b</i>]thiophene D–A–π–A sensitizers on the performance of dye-sensitized solar cells and photocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 14864-14872.	2.7	12
52	A favored crystal orientation for efficient printable mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11148-11154.	5.2	42
53	Diketopyrrolopyrrole-based multifunctional ratiometric fluorescent probe and γ-glutamyltranspeptidase-triggered activatable photosensitizer for tumor therapy. Journal of Materials Chemistry C, 2020, 8, 8183-8190.	2.7	26
54	Influence of precursor concentration on printable mesoscopic perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 256-264.	1.9	11

#	Article	IF	CITATIONS
55	Postâ€Treatment of Mesoporous Scaffolds for Enhanced Photovoltage of Tripleâ€Mesoscopic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000185.	3.1	22
56	Hole-conductor-free perovskite solar cells. MRS Bulletin, 2020, 45, 449-457.	1.7	5
57	Noble-Metal-Free Perovskite–BiVO ₄ Tandem Device with Simple Preparation Method for Unassisted Solar Water Splitting. Energy & Fuels, 2020, 34, 5016-5023.	2.5	28
58	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	2.5	37
59	Passive Visible-to-Telecom Converter Using Tunable Perovskites and Silicon Photonics. Journal of Lightwave Technology, 2020, 38, 3533-3539.	2.7	1
60	Solar Cells: Crystallization Control of Ternary ation Perovskite Absorber in Tripleâ€Mesoscopic Layer for Efficient Solar Cells (Adv. Energy Mater. 5/2020). Advanced Energy Materials, 2020, 10, 2070022.	10.2	1
61	Efficient triple-mesoscopic perovskite solar mini-modules fabricated with slot-die coating. Nano Energy, 2020, 74, 104842.	8.2	63
62	Interfacial Roughness Facilitated by Dislocation and a Metal-Fuse Resistor Fabricated Using a Nanomanipulator. ACS Applied Materials & Interfaces, 2020, 12, 24442-24449.	4.0	1
63	Crystallization Control of Methylammoniumâ€Free Perovskite in Twoâ€Step Deposited Printable Tripleâ€Mesoscopic Solar Cells. Solar Rrl, 2020, 4, 2000455.	3.1	24
64	Beyond traditional photovoltaics: Photoelectric characteristics of printable mesoscopic perovskite solar cells under low light intensities. Chinese Science Bulletin, 2020, 65, 4272-4280.	0.4	0
65	Two-Stage Melt Processing of Phase-Pure Selenium for Printable Triple-Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 33879-33885.	4.0	14
66	Amide Additives Induced a Fermi Level Shift To Improve the Performance of Hole-Conductor-Free, Printable Mesoscopic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 6865-6872.	2.1	62
67	Standardizing Perovskite Solar Modules beyond Cells. Joule, 2019, 3, 2076-2085.	11.7	56
68	High performance printable perovskite solar cells based on Cs0.1FA0.9PbI3 in mesoporous scaffolds. Journal of Power Sources, 2019, 415, 105-111.	4.0	34
69	A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chemical Communications, 2019, 55, 2765-2768.	2.2	40
70	A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H ₂ evolution. Chemical Communications, 2019, 55, 8090-8093.	2.2	57
71	Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells. Frontiers of Optoelectronics, 2019, 12, 344-351.	1.9	26
72	Modeling the edge effect for measuring the performance of mesoscopic solar cells with shading masks. Journal of Materials Chemistry A, 2019, 7, 10942-10948.	5.2	11

#	Article	IF	CITATIONS
73	Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62, 684-707.	4.2	50
74	Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells. Journal of Power Sources, 2019, 424, 261-267.	4.0	21
75	Encapsulation of Printable Mesoscopic Perovskite Solar Cells Enables High Temperature and Longâ€Term Outdoor Stability. Advanced Functional Materials, 2019, 29, 1809129.	7.8	133
76	Spacer layer design for efficient fully printable mesoscopic perovskite solar cells. RSC Advances, 2019, 9, 29840-29846.	1.7	14
77	Fine tuning of pyridinium-functionalized dibenzo[<i>a</i> , <i>c</i>]phenazine near-infrared AIE fluorescent biosensors for the detection of lipopolysaccharide, bacterial imaging and photodynamic antibacterial therapy. Journal of Materials Chemistry C, 2019, 7, 12509-12517.	2.7	37
78	Vanadium Oxide Post-Treatment for Enhanced Photovoltage of Printable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 2619-2625.	3.2	36
79	Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 276-277.	8.8	101
80	Bridge from Visible Light Communication to Telecommunication via Perovskite-Silicon Photonics. , 2019, , .		0
81	Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Advanced Materials, 2018, 30, 1705786.	11.1	209
82	Efficient Perovskite Photovoltaicâ€Thermoelectric Hybrid Device. Advanced Energy Materials, 2018, 8, 1702937.	10.2	71
83	Mixed (5-AVA) _x MA _{1â^'x} Pbl _{3â^'y} (BF ₄) _y perovskites enhance the photovoltaic performance of hole-conductor-free printable mesoscopic solar cells. Journal of Materials Chemistry A, 2018, 6, 2360-2364.	5.2	40
84	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 10835-10841.	4.0	28
85	Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive. Journal of Energy Chemistry, 2018, 27, 764-768.	7.1	23
86	Printable carbon-based hole-conductor-free mesoscopic perovskite solar cells: From lab to market. Materials Today Energy, 2018, 7, 221-231.	2.5	47
87	Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite-compatible carbon electrode. Carbon, 2018, 129, 830-836.	5.4	79
88	Improvements in printable mesoscopic perovskite solar cells <i>via</i> thinner spacer layers. Sustainable Energy and Fuels, 2018, 2, 2412-2418.	2.5	21
89	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
90	Fullerene derivative as an additive for highly efficient printable mesoscopic perovskite solar cells. Organic Electronics, 2018, 62, 653-659.	1.4	10

#	Article	IF	CITATIONS
91	The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 16481-16487.	1.5	52
92	A C ₆₀ Modification Layer Using a Scalable Deposition Technology for Efficient Printable Mesoscopic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800174.	3.1	19
93	Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9, 2707-2713.	2.1	124
94	Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47, 7050-7058.	1.6	34
95	Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53, 160-167.	8.2	83
96	Efficient hole-conductor-free printable mesoscopic perovskite solar cells based on hybrid carbon electrodes. , 2018, , .		0
97	Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustainable Energy and Fuels, 2017, 1, 308-316.	2.5	90
98	Molecular engineering of D–A–ï€â€"A sensitizers for highly efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 3157-3166.	5.2	41
99	Stable Largeâ€Area (10 × 10 cm ²) Printable Mesoscopic Perovskite Module Exceedi Efficiency. Solar Rrl, 2017, 1, 1600019.	ng 10%	272
100	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8, 14555.	5.8	270
101	Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite. Carbon, 2017, 120, 71-76.	5.4	77
102	High performance solid-state dye-sensitized solar cells based on organic blue-colored dyes. Journal of Materials Chemistry A, 2017, 5, 1242-1247.	5.2	35
103	Organic–Inorganic Copper(II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application. Journal of Physical Chemistry Letters, 2017, 8, 1804-1809.	2.1	103
104	Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells. RSC Advances, 2017, 7, 10118-10123.	1.7	19
105	Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31721-31727.	4.0	83
106	Improvement and Regeneration of Perovskite Solar Cells via Methylamine Gas Postâ€Treatment. Advanced Functional Materials, 2017, 27, 1703060.	7.8	89
107	Tunable hysteresis effect for perovskite solar cells. Energy and Environmental Science, 2017, 10, 2383-2391.	15.6	188
108	Effect of guanidinium on mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 73-78.	5.2	146

#	Article	IF	CITATIONS
109	Significance of π-bridge contribution in pyrido[3,4-b]pyrazine featured D–A–π–A organic dyes for dye-sensitized solar cells. Materials Chemistry Frontiers, 2017, 1, 181-189.	3.2	28
110	High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15027-15034.	1.5	28
111	A thermoresponsive fluorescent rotor based on a hinged naphthalimide for a viscometer and a viscosity-related thermometer. Journal of Materials Chemistry C, 2016, 4, 5696-5701.	2.7	50
112	Enhanced electronic properties in CH ₃ NH ₃ PbI ₃ via LiCl mixing for hole-conductor-free printable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16731-16736.	5.2	81
113	Efficient Compact-Layer-Free, Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2016, 7, 4142-4146.	2.1	35
114	Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2016, 138, 10742-10745.	6.6	119
115	Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 12865-12877.	5.2	66
116	Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27, 130-137.	8.2	141
117	Atypical organic dyes used as sensitizers for efficient dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 38-43.	1.9	9
118	Aggregated-induced emission phenothiazine probe for selective ratiometric response of hypochlorite over other reactive oxygen species. Dyes and Pigments, 2016, 128, 54-59.	2.0	36
119	†Donor-free' oligo(3-hexylthiophene) dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2509-2516.	5.2	28
120	Theoretical and Experimental Research on the Bulk Photovoltaic Effect in Hybrid Organic–Inorganic Perovskites CH ₃ NH ₃ PbI ₂ <i>X</i> (<i>X</i> = Cl, Br, I). Science of Advanced Materials, 2016, 8, 2223-2230.	0.1	5
121	Unprecedented Strong Panchromic Absorption from Protonâ€Switchable Iridium(III) Azoimidazolate Complexes. Chemistry - A European Journal, 2015, 21, 19128-19135.	1.7	11
122	In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells. Scientific Reports, 2015, 5, 17750.	1.6	16
123	Ruthenium Dyes with Azo Ligands: Light Harvesting, Excited-State Properties and Relevance to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2015, 2015, 5864-5873.	1.0	4
124	Linker effect of ethylenedioxythiophenes in platinum acetylide sensitizers with hybrid starburst donors for dye-sensitized solar cells. Solar Energy, 2015, 118, 441-450.	2.9	4
125	A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Scientific Reports, 2015, 5, 8592.	1.6	24
126	Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs. Inorganic Chemistry, 2015, 54, 4029-4038.	1.9	87

#	Article	IF	CITATIONS
127	Insight into quinoxaline containing D–π–A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of π-bridge on the HOMO energy level and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21733-21743.	5.2	47
128	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	2.7	31
129	Near-infrared absorbing isoindigo sensitizers: Synthesis and performance for dye-sensitized solar cells. Dyes and Pigments, 2015, 112, 327-334.	2.0	42
130	5-Phenyl-iminostilbene based organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 6241-6248.	1.0	1
131	Geometrical Isomerism of Ru ^{II} Dyeâ€Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014, 15, 1207-1215.	1.0	11
132	Low temperature growth of hybrid ZnO/TiO ₂ nano-sculptured foxtail-structures for dye-sensitized solar cells. RSC Advances, 2014, 4, 61153-61159.	1.7	15
133	New Organic Donor–Acceptor–π–Acceptor Sensitizers for Efficient Dyeâ€ S ensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visibleâ€Light Irradiation. ChemSusChem, 2014, 7, 2879-2888.	3.6	50
134	Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free ruthenium sensitizers. Journal of Materials Chemistry A, 2014, 2, 19556-19565.	5.2	21
135	Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 8497-8500.	2.7	24
136	π–π and p–π conjugation, which is more efficient for intermolecular charge transfer in starburst triarylamine donors of platinum acetylide sensitizers?. Dyes and Pigments, 2014, 111, 21-29.	2.0	10
137	A Siliconâ€based Imidazolium Ionic Liquid Iodide Source for Dye‣ensitized Solar Cells. Chinese Journal of Chemistry, 2013, 31, 388-392.	2.6	4
138	Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene Ï€-bridges. Journal of Materials Chemistry, 2012, 22, 5382.	6.7	82