## **Doug Armstrong**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258897/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Developing the Science of Reintroduction Biology. Conservation Biology, 2007, 21, 303-312.                                                                                               | 4.7  | 888       |
| 2  | Directions in reintroduction biology. Trends in Ecology and Evolution, 2008, 23, 20-25.                                                                                                  | 8.7  | 790       |
| 3  | Reversing defaunation: Restoring species in a changing world. Science, 2014, 345, 406-412.                                                                                               | 12.6 | 500       |
| 4  | Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4033-4038. | 7.1  | 365       |
| 5  | When do we need more data? A primer on calculating the value of information for applied ecologists.<br>Methods in Ecology and Evolution, 2015, 6, 1219-1228.                             | 5.2  | 146       |
| 6  | Using adaptive management to determine requirements of re-introduced populations: the case of the<br>New Zealand hihi. Journal of Applied Ecology, 2007, 44, 953-962.                    | 4.0  | 124       |
| 7  | Standards for documenting and monitoring bird reintroduction projects. Conservation Letters, 2010, 3, 229-235.                                                                           | 5.7  | 115       |
| 8  | ls Reintroduction Biology an Effective Applied Science?. Trends in Ecology and Evolution, 2017, 32,<br>873-880.                                                                          | 8.7  | 111       |
| 9  | Cost distance modelling of landscape connectivity and gap-crossing ability using radio-tracking data.<br>Journal of Applied Ecology, 2010, 47, 603-610.                                  | 4.0  | 89        |
| 10 | Integrating the Metapopulation and Habitat Paradigms for Understanding Broad-Scale Declines of Species. Conservation Biology, 2005, 19, 1402-1410.                                       | 4.7  | 83        |
| 11 | Population dynamics of reintroduced forest birds on New Zealand islands. Journal of Biogeography, 2002, 29, 609-621.                                                                     | 3.0  | 82        |
| 12 | Mortality and behaviour of hihi, an endangered New Zealand honeyeater, in the establishment phase following translocation. Biological Conservation, 1999, 89, 329-339.                   | 4.1  | 79        |
| 13 | Demographics of reintroduced populations: Estimation, modeling, and decision analysis. Journal of<br>Wildlife Management, 2013, 77, 1081-1093.                                           | 1.8  | 72        |
| 14 | Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks. Behavioral Ecology, 2009, 20, 575-584.                                              | 2.2  | 70        |
| 15 | Successful island reintroductions of New Zealand robins and saddlebacks with small numbers of founders. Animal Conservation, 2005, 8, 415-420.                                           | 2.9  | 66        |
| 16 | Dynamics and Viability of a New Zealand Robin Population Reintroduced to Regenerating Fragmented<br>Habitat. Conservation Biology, 2002, 16, 1074-1085.                                  | 4.7  | 63        |
| 17 | Density-dependent population growth in a reintroduced population of North Island saddlebacks.<br>Journal of Animal Ecology, 2005, 74, 160-170.                                           | 2.8  | 61        |
| 18 | Adaptive Harvesting of Source Populations for Translocation: a Case Study with New Zealand Robins.<br>Conservation Biology, 2007, 21, 114-124.                                           | 4.7  | 60        |

DOUG ARMSTRONG

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Importance of lethal control of invasive predators for island conservation. Conservation Biology, 2016, 30, 670-672.                                                                                   | 4.7 | 44        |
| 20 | Adaptive management for improving species conservation across the captive-wild spectrum. Biological Conservation, 2016, 199, 123-131.                                                                  | 4.1 | 42        |
| 21 | Incorporating Allee effects into reintroduction strategies. Ecological Research, 2011, 26, 687-695.                                                                                                    | 1.5 | 41        |
| 22 | Social and Sexual Monogamy in Translocated New Zealand Robin Populations Detected Using Minisatellite DNA. Auk, 1997, 114, 120-126.                                                                    | 1.4 | 40        |
| 23 | Using Bayesian mark-recapture modelling to quantify the strength and duration of post-release effects in reintroduced populations. Biological Conservation, 2017, 215, 39-45.                          | 4.1 | 33        |
| 24 | An Experiment Testing whether Condition and Survival are Limited by Food Supply in a Reintroduced<br>Hihi Population. Conservation Biology, 2000, 14, 1171-1181.                                       | 4.7 | 32        |
| 25 | Estimating the Viability of a Reintroduced New Zealand Robin Population as a Function of Predator<br>Control. Journal of Wildlife Management, 2006, 70, 1020-1027.                                     | 1.8 | 32        |
| 26 | A Tale of Two Islands: The Rescue and Recovery of Endemic Birds in New Zealand and Mauritius. , 2012, , 33-72.                                                                                         |     | 32        |
| 27 | Effect of Extra-Pair Paternity on Effective Population Size in a Reintroduced Population of the<br>Endangered Hihi, and Potential for Behavioural Management. Conservation Genetics, 2004, 5, 381-393. | 1.5 | 28        |
| 28 | Modeling Vital Rates of a Reintroduced New Zealand Robin Population as a Function of Predator<br>Control. Journal of Wildlife Management, 2006, 70, 1028-1036.                                         | 1.8 | 28        |
| 29 | Not so soft? Delayed release reduces long-term survival in a passerine reintroduction. Oryx, 2015, 49, 535-541.                                                                                        | 1.0 | 28        |
| 30 | The Effect of Male Incubation Feeding, Food and Temperature on the Incubation Behaviour of New Zealand Robins. Ethology, 2010, 116, 490-497.                                                           | 1.1 | 27        |
| 31 | Unusual sexual behaviour in the Stitchbird (or Hihi) Notiomystis cincta. Ibis, 2002, 144, 530-531.                                                                                                     | 1.9 | 26        |
| 32 | Application of hierarchical biphasic growth models to long-term data for snapping turtles.<br>Ecological Modelling, 2013, 250, 119-125.                                                                | 2.5 | 25        |
| 33 | EDITOR'S CHOICE: Saving the hihi under climate change: a case for assisted colonization. Journal of Applied Ecology, 2013, 50, 1330-1340.                                                              | 4.0 | 24        |
| 34 | Parasite management in translocations: lessons from a threatened New Zealand bird. Oryx, 2012, 46, 446-456.                                                                                            | 1.0 | 23        |
| 35 | Subtle individual variation in indeterminate growth leads to major variation in survival and lifetime reproductive output in a longâ€ived reptile. Functional Ecology, 2018, 32, 752-761.              | 3.6 | 23        |
| 36 | The importance of integrating landscape ecology in habitat models: isolation-driven occurrence of north island robins in a fragmented landscape. Landscape Ecology, 2010, 25, 1363-1374.               | 4.2 | 19        |

DOUG ARMSTRONG

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An Integrated Approach for Predicting Fates of Reintroductions with Demographic Data from<br>Multiple Populations. Conservation Biology, 2012, 26, 97-106.                                                                           | 4.7 | 19        |
| 38 | Estimating Ages of Turtles from Growth Data. Chelonian Conservation and Biology, 2014, 13, 9.                                                                                                                                        | 0.6 | 18        |
| 39 | Links between personality, early natal nutrition and survival of a threatened bird. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190373.                                                  | 4.0 | 18        |
| 40 | Consequences Matter: Compassion in Conservation Means Caring for Individuals, Populations and Species. Animals, 2019, 9, 1115.                                                                                                       | 2.3 | 18        |
| 41 | Facultative prioritization of wing growth in the Welcome Swallow Hirundo neoxena. Ibis, 2002, 144, 470-477.                                                                                                                          | 1.9 | 15        |
| 42 | Postâ€release effects on reintroduced populations of hihi. Journal of Wildlife Management, 2016, 80,<br>970-977.                                                                                                                     | 1.8 | 15        |
| 43 | Predation by New Zealand sea lions and Brown Skuas is causing the continued decline of an Eastern<br>Rockhopper Penguin colony on Campbell Island. Polar Biology, 2017, 40, 735-751.                                                 | 1.2 | 15        |
| 44 | Discriminating the Drivers of Edge Effects on Nest Predation: Forest Edges Reduce Capture Rates of<br>Ship Rats (Rattus rattus), a Globally Invasive Nest Predator, by Altering Vegetation Structure. PLoS<br>ONE, 2014, 9, e113098. | 2.5 | 14        |
| 45 | Traits influencing range contraction in New Zealand's endemic forest birds. Oecologia, 2015, 179,<br>319-328.                                                                                                                        | 2.0 | 14        |
| 46 | Strategic Rat Control for Restoring Populations of Native Species in Forest Fragments. Conservation Biology, 2014, 28, 713-723.                                                                                                      | 4.7 | 13        |
| 47 | Survival rates of oil-rehabilitated and non-rehabilitated little penguins after the C/V Rena oil spill,<br>New Zealand. Marine Pollution Bulletin, 2019, 146, 317-325.                                                               | 5.0 | 12        |
| 48 | Using prior data to improve models for reintroduced populations: A case study with North Island<br>Saddlebacks. Journal of Wildlife Management, 2013, 77, 1114-1123.                                                                 | 1.8 | 10        |
| 49 | Focal and Surrogate Species: Getting the Language Right. Conservation Biology, 2002, 16, 285-286.                                                                                                                                    | 4.7 | 9         |
| 50 | Making structured decisions for reintroduced populations in the face of uncertainty. Conservation Science and Practice, 2019, 1, e90.                                                                                                | 2.0 | 8         |
| 51 | Population responses of a native bird species to rat control. Journal of Wildlife Management, 2017, 81, 342-346.                                                                                                                     | 1.8 | 6         |
| 52 | Predicting reintroduction outcomes for highly vulnerable species that do not currently coexist with their key threats. Conservation Biology, 2018, 32, 1346-1355.                                                                    | 4.7 | 6         |
| 53 | A model of seasonal variation in somatic growth rates applied to two temperate turtle species.<br>Ecological Modelling, 2021, 443, 109454.                                                                                           | 2.5 | 6         |
| 54 | A modelling framework for integrating reproduction, survival and count data when projecting the fates of threatened populations. Oecologia, 2021, 195, 627-640.                                                                      | 2.0 | 6         |

Doug Armstrong

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bayesian Hierarchical Models for Inference About Population Growth. , 2009, , 3-17.                                                                                                                                          |     | 5         |
| 56 | Predicting harvest impact and establishment success when translocating highly mobile and endangered species. Journal of Applied Ecology, 2022, 59, 2071-2083.                                                                | 4.0 | 5         |
| 57 | Using longâ€ŧerm data for a reintroduced population to empirically estimate future consequences of<br>inbreeding. Conservation Biology, 2021, 35, 859-869.                                                                   | 4.7 | 4         |
| 58 | Preparing for translocations of a Critically Endangered petrel through targeted monitoring of nest survival and breeding biology. Oryx, 0, , 1-9.                                                                            | 1.0 | 4         |
| 59 | The role of pine plantations in source-sink dynamics of North Island robins. New Zealand Journal of Ecology, 2019, 43, .                                                                                                     | 1.1 | 4         |
| 60 | Territorial Behaviour of Breeding White-Cheeked and New Holland Honeyeaters: Conspicuous<br>Behaviour Does Not Reflect Aggressiveness. Emu, 1996, 96, 1-11.                                                                  | 0.6 | 3         |
| 61 | Modelling variation in calling rates to develop a reliable monitoring method for the Australasian<br>Bittern <i>Botaurus poiciloptilus</i> . Ibis, 2019, 161, 260-271.                                                       | 1.9 | 3         |
| 62 | Distinguishing effects of juvenile mortality and dispersal on recruitment. Journal of Wildlife<br>Management, 2019, 83, 1744-1752.                                                                                           | 1.8 | 3         |
| 63 | Using experimental reintroductions to resolve the roles of habitat quality and metapopulation dynamics on patch occupancy in fragmented landscapes. Conservation Biology, 2021, , .                                          | 4.7 | 3         |
| 64 | Use of distance sampling to measure long-term changes in bird densities in a fenced wildlife sanctuary. New Zealand Journal of Ecology, 2019, 43, .                                                                          | 1.1 | 3         |
| 65 | Making inferences from the reintroduction literature: a response to Bajomi et al Oryx, 2011, 45, 18-18.                                                                                                                      | 1.0 | 2         |
| 66 | Twenty years on: changes in lizard encounter rates following eradication of rats from KÄpiti Island.<br>New Zealand Journal of Ecology, 0, , .                                                                               | 1.1 | 2         |
| 67 | Capturing the dynamics of small populations: A retrospective assessment using longâ€ŧerm data for an island reintroduction. Journal of Animal Ecology, 2021, 90, 2915-2927.                                                  | 2.8 | 2         |
| 68 | Improved methods for reducing translocation mortality and obtaining reliable population projections for reintroduction of the New Zealand Rifleman Acanthisitta chloris. Bird Conservation International, 2019, 29, 542-557. | 1.3 | 1         |
| 69 | Incorporating individual variation in survival, reproduction and detection rates when projecting dynamics of small populations. Ecological Modelling, 2021, 455, 109647.                                                     | 2.5 | 1         |