
Philip R Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxylipin metabolism is controlled by mitochondrial Î ² -oxidation during bacterial inflammation. Nature Communications, 2022, 13, 139.	12.8	27
2	Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathologica Communications, 2022, 10, .	5.2	19
3	Dependence on Mincle and Dectin-2 Varies With Multiple Candida Species During Systemic Infection. Frontiers in Microbiology, 2021, 12, 633229.	3.5	6
4	A Human Dectin-2 Deficiency Associated With Invasive Aspergillosis. Journal of Infectious Diseases, 2021, 224, 1219-1224.	4.0	9
5	Single-Nucleus RNA Sequencing Identifies New Classes of Proximal Tubular Epithelial Cells in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2021, 32, 2501-2516.	6.1	38
6	PIP2 depletion and altered endocytosis caused by expression of Alzheimer's diseaseâ€protective variant PLCÎ32 R522. EMBO Journal, 2021, 40, e105603.	7.8	21
7	Modest changes in Spi1 dosage reveal the potential for altered microglial function as seen in Alzheimer's disease. Scientific Reports, 2021, 11, 14935.	3.3	19
8	Macrophage reprogramming for therapy. Immunology, 2021, 163, 128-144.	4.4	30
9	A Novel Strategy to Identify Haematology Patients at High Risk of Developing Aspergillosis. Frontiers in Immunology, 2021, 12, 780160.	4.8	4
10	Effective InÂVivo Gene Modification in Mouse Tissue-Resident Peritoneal Macrophages by Intraperitoneal Delivery of Lentiviral Vectors. Molecular Therapy - Methods and Clinical Development, 2020, 16, 21-31.	4.1	9
11	Tissueâ€resident macrophages actively suppress ILâ€1 beta release via a reactive prostanoid/ILâ€10 pathway. EMBO Journal, 2020, 39, e103454.	7.8	33
12	The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors. PLoS Pathogens, 2019, 15, e1007850.	4.7	35
13	Dependence on Dectin-1 Varies With Multiple Candida Species. Frontiers in Microbiology, 2019, 10, 1800.	3.5	22
14	Development and characterization of novel anti 5 monoclonal antibodies capable of inhibiting complement in multiple species. Immunology, 2019, 157, 283-295.	4.4	20
15	Activation of naÃ ⁻ ve CD4+ T cells re-tunes STAT1 signaling to deliver unique cytokine responses in memory CD4+ T cells. Nature Immunology, 2019, 20, 458-470.	14.5	32
16	Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. Journal of Immunology, 2018, 201, 3106-3118.	0.8	15
17	Differential susceptibility of Dectinâ€l isoforms to functional inactivation by neutrophil and fungal proteases. FASEB Journal, 2018, 32, 3385-3397.	0.5	26
18	Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney International, 2017, 91, 1088-1103.	5.2	53

#	Article	IF	CITATIONS
19	miR-21 Promotes Fibrogenesis in Peritoneal Dialysis. American Journal of Pathology, 2017, 187, 1537-1550.	3.8	30
20	Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nature Communications, 2017, 8, 2074.	12.8	76
21	Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Science Signaling, 2017, 10, .	3.6	40
22	NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival. Blood, 2017, 130, 1014-1025.	1.4	46
23	Myeloid 12/15-LOX regulates B cell numbers and innate immune antibody levels in vivo. Wellcome Open Research, 2017, 2, 1.	1.8	16
24	Death Receptor 3 Promotes Chemokine-Directed Leukocyte Recruitment in Acute Resolving Inflammation and Is Essential for Pathological Development of Mesothelial Fibrosis in Chronic Disease. American Journal of Pathology, 2016, 186, 2813-2823.	3.8	12
25	ILâ€10 differentially controls the infiltration of inflammatory macrophages and antigenâ€presenting cells during inflammation. European Journal of Immunology, 2016, 46, 2222-2232.	2.9	29
26	IL-27 Induced by Select <i>Candida</i> spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. Journal of Immunology, 2016, 197, 208-221.	0.8	33
27	Understanding Local Macrophage Phenotypes In Disease: Shape-shifting macrophages. Nature Medicine, 2015, 21, 119-120.	30.7	45
28	Antigen targeting reveals splenic CD169 ⁺ macrophages as promoters of germinal center Bâ€cell responses. European Journal of Immunology, 2015, 45, 747-757.	2.9	50
29	Tissueâ€resident macrophages: then and now. Immunology, 2015, 144, 541-548.	4.4	274
30	CD200 Receptor Restriction of Myeloid Cell Responses Antagonizes Antiviral Immunity and Facilitates Cytomegalovirus Persistence within Mucosal Tissue. PLoS Pathogens, 2015, 11, e1004641.	4.7	16
31	Neutrophils Recruited by IL-22 in Peripheral Tissues Function as TRAIL-Dependent Antiviral Effectors against MCMV. Cell Host and Microbe, 2014, 15, 471-483.	11.0	58
32	Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nature Communications, 2014, 5, 3039.	12.8	139
33	miR-192 Induces G2/M Growth Arrest in Aristolochic Acid Nephropathy. American Journal of Pathology, 2014, 184, 996-1009.	3.8	48
34	The Transcription Factor Gata6 Links Tissue Macrophage Phenotype and Proliferative Renewal. Science, 2014, 344, 645-648.	12.6	317
35	Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation. Immunity, 2014, 40, 40-50.	14.3	297
36	Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Research and Therapy, 2014, 16, 419.	3.5	86

#	Article	IF	CITATIONS
37	Interleukinâ€6 limits influenzaâ€induced inflammation and protects against fatal lung pathology. European Journal of Immunology, 2013, 43, 2613-2625.	2.9	143
38	Tissue-resident macrophages. Nature Immunology, 2013, 14, 986-995.	14.5	1,621
39	Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741.	14.3	572
40	Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nature Communications, 2013, 4, 1886.	12.8	261
41	LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-Î ³ Production by Repressing Î ² -Catenin Activation in Dendritic Cells. PLoS Pathogens, 2013, 9, e1003357.	4.7	14
42	Phagocytosis Is the Main CR3-Mediated Function Affected by the Lupus-Associated Variant of CD11b in Human Myeloid Cells. PLoS ONE, 2013, 8, e57082.	2.5	58
43	Development of myeloproliferative disease in 12/15-lipoxygenase deficiency. Blood, 2012, 119, 6173-6174.	1.4	10
44	Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcÎ ³ RIIB and dectin-1. Nature Medicine, 2012, 18, 1401-1406.	30.7	405
45	Differential Dependencies of Monocytes and Neutrophils on Dectin-1, Dectin-2 and Complement for the Recognition of Fungal Particles in Inflammation. PLoS ONE, 2012, 7, e45781.	2.5	38
46	Esterified eicosanoids are acutely generated by 5-lipoxygenase in primary human neutrophils and in human and murine infection. Blood, 2011, 117, 2033-2043.	1.4	77
47	Restoration of Pattern Recognition Receptor Costimulation to Treat Chromoblastomycosis, a Chronic Fungal Infection of the Skin. Cell Host and Microbe, 2011, 9, 436-443.	11.0	146
48	Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells. European Journal of Immunology, 2011, 41, 356-365.	2.9	30
49	Macrophage heterogeneity and acute inflammation. European Journal of Immunology, 2011, 41, 2503-2508.	2.9	71
50	A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. European Journal of Immunology, 2011, 41, 2155-2164.	2.9	187
51	Class IA Phosphoinositide 3-Kinase β and δ Regulate Neutrophil Oxidase Activation in Response to <i>Aspergillus fumigatus</i> Hyphae. Journal of Immunology, 2011, 186, 2978-2989.	0.8	64
52	Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax, 2011, 66, 368-374.	5.6	39
53	<i>In vivo</i> functional analysis and genetic modification of <i>in vitro</i> â€derived mouse neutrophils. FASEB Journal, 2011, 25, 1972-1982.	0.5	33
54	Fungal Recognition Enhances Mannose Receptor Shedding through Dectin-1 Engagement. Journal of Biological Chemistry, 2011, 286, 7822-7829.	3.4	53

#	Article	IF	CITATIONS
55	Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood, 2010, 116, 5991-6002.	1.4	109
56	The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. Journal of Leukocyte Biology, 2010, 88, 169-180.	3.3	92
57	Pathways Regulating Cytosolic Phospholipase A2 Activation and Eicosanoid Production in Macrophages by Candida albicans. Journal of Biological Chemistry, 2010, 285, 30676-30685.	3.4	55
58	Cytosolic Phospholipase A ₂ Activation by <i>Candida albicans</i> in Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 415-423.	2.9	24
59	Endogenous Oncogenic Nras Mutation Leads to Aberrant GM-CSF Signaling In Granulocytic/Monocytic Precursors In a Murine Model of Chronic Myelomonocytic Leukemia. Blood, 2010, 116, 4180-4180.	1.4	Ο
60	CLEC-2 Is a Phagocytic Activation Receptor Expressed on Murine Peripheral Blood Neutrophils. Journal of Immunology, 2009, 182, 4150-4157.	0.8	111
61	Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. Journal of Experimental Medicine, 2009, 206, 2037-2051.	8.5	411
62	Actin and Phosphoinositide Recruitment to Fully Formed <i>Candida albicans </i> Phagosomes in Mouse Macrophages. Journal of Innate Immunity, 2009, 1, 244-253.	3.8	25
63	The C-Type Lectin SIGNR1 Binds <i>Schistosoma mansoni</i> Antigens In Vitro, but SIGNR1-Deficient Mice Have Normal Responses during Schistosome Infection. Infection and Immunity, 2009, 77, 399-404.	2.2	33
64	Complement C3 Plays an Essential Role in the Control of Opportunistic Fungal Infections. Infection and Immunity, 2009, 77, 3679-3685.	2.2	72
65	The contribution of naturally occurring IgM antibodies, IgM cross-reactivity and complement dependency in murine humoral responses to pneumococcal capsular polysaccharides. Vaccine, 2009, 27, 5806-5815.	3.8	10
66	Phosphatidylethanolamine-esterified Eicosanoids in the Mouse. Journal of Biological Chemistry, 2009, 284, 21185-21191.	3.4	72
67	Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. Journal of Cell Biology, 2009, 186, i9-i9.	5.2	0
68	Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like receptors. European Journal of Immunology, 2008, 38, 500-506.	2.9	328
69	Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand. European Journal of Immunology, 2008, 38, 1157-1163.	2.9	70
70	12/15-Lipoxygenase Regulates the Inflammatory Response to Bacterial Products In Vivo. Journal of Immunology, 2008, 181, 6514-6524.	0.8	83
71	The Induction of Inflammation by Dectin-1 In Vivo Is Dependent on Myeloid Cell Programming and the Progression of Phagocytosis. Journal of Immunology, 2008, 181, 3549-3557.	0.8	120
72	Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis. PLoS Pathogens, 2008, 4, e1000218.	4.7	110

#	Article	IF	CITATIONS
73	Oncostatin M Receptor-Î ² Signaling Limits Monocytic Cell Recruitment in Acute Inflammation. Journal of Immunology, 2008, 181, 2174-2180.	0.8	24
74	RNA Interference Mutant Induction In Vivo Demonstrates the Essential Nature of Trypanosome Flagellar Function during Mammalian Infection. Eukaryotic Cell, 2007, 6, 1248-1250.	3.4	38
75	Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells. Journal of Immunology, 2007, 178, 4975-4983.	0.8	100
76	Characterisation of the expression and function of the GMâ€CSF receptor αâ€chain in mice. European Journal of Immunology, 2007, 37, 2518-2528.	2.9	49
77	Dectin-1 is required for \hat{l}^2 -glucan recognition and control of fungal infection. Nature Immunology, 2007, 8, 31-38.	14.5	1,042
78	Soluble Dectin-1 as a tool to detect β-glucans. Journal of Immunological Methods, 2006, 314, 164-169.	1.4	107
79	Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 2006, 98, 966-980.	2.6	23
80	The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology, 2006, 16, 422-430.	2.5	327
81	Ly49B Is Expressed on Multiple Subpopulations of Myeloid Cells. Journal of Immunology, 2006, 177, 5840-5851.	0.8	25
82	Regulation of Cytosolic Phospholipase A2 Activation and Cyclooxygenase 2 Expression in Macrophages by the β-Glucan Receptor. Journal of Biological Chemistry, 2006, 281, 5506-5514.	3.4	114
83	Expression of Functionally Different Dectin-1 Isoforms by Murine Macrophages. Journal of Immunology, 2006, 176, 5513-5518.	0.8	98
84	Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 2005, 5, 953-964.	22.7	4,366
85	Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicitedin vivo. European Journal of Immunology, 2005, 35, 2163-2174.	2.9	122
86	The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in Immunology, 2005, 26, 104-110.	6.8	298
87	The Role of SIGNR1 and the β-Glucan Receptor (Dectin-1) in the Nonopsonic Recognition of Yeast by Specific Macrophages. Journal of Immunology, 2004, 172, 1157-1162.	0.8	183
88	Development of a specific system for targeting protein to metallophilic macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1963-1968.	7.1	41
89	Expression of the β-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. Journal of Leukocyte Biology, 2004, 76, 86-94.	3.3	113
90	Murine CD93 (C1qRp) Contributes to the Removal of Apoptotic Cells In Vivo but Is Not Required for C1q-Mediated Enhancement of Phagocytosis. Journal of Immunology, 2004, 172, 3406-3414.	0.8	127

#	Article	IF	CITATIONS
91	Pattern recognition receptors and differentiation antigens define murine myeloid cell heterogeneity <i>ex vivo</i> . European Journal of Immunology, 2003, 33, 2090-2097.	2.9	111
92	Monocyte Heterogeneity and Innate Immunity. Immunity, 2003, 19, 2-4.	14.3	110
93	Dectin-1 Expression and Function Are Enhanced on Alternatively Activated and GM-CSF-Treated Macrophages and Are Negatively Regulated by IL-10, Dexamethasone, and Lipopolysaccharide. Journal of Immunology, 2003, 171, 4569-4573.	0.8	225
94	Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. Journal of Leukocyte Biology, 2003, 73, 604-613.	3.3	110
95	The β-Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages. Journal of Immunology, 2002, 169, 3876-3882.	0.8	580
96	Recognition of Bacterial Capsular Polysaccharides and Lipopolysaccharides by the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2002, 277, 41613-41623.	3.4	188
97	Dectin-1 Is A Major β-Clucan Receptor On Macrophages. Journal of Experimental Medicine, 2002, 196, 407-412.	8.5	902
98	The follicular dendritic cell restricted epitope, FDC-M2, is complement C4; localization of immune complexes in mouse tissues. European Journal of Immunology, 2002, 32, 1883.	2.9	68
99	Binding Properties of the Mannose Receptor. Immunobiology, 2001, 204, 527-535.	1.9	67
100	Accelerated Nephrotoxic Nephritis Is Exacerbated in C1q-Deficient Mice. Journal of Immunology, 2001, 166, 6820-6828.	0.8	83
101	Complement Contributes to Protective Immunity against Reinfection by Plasmodium chabaudi chabaudi chabaudiParasites. Infection and Immunity, 2001, 69, 3853-3859.	2.2	32
102	A Hierarchical Role for Classical Pathway Complement Proteins in the Clearance of Apoptotic Cells in Vivo. Journal of Experimental Medicine, 2000, 192, 359-366.	8.5	696
103	Cloning of the mouse homolog of the 126-kDa human C1q/MBL/SP-A receptor, C1qR p. Mammalian Genome, 1999, 10, 789-793.	2.2	20
104	A Targeted Disruption of the Murine Complement Factor B Gene Resulting in Loss of Expression of Three Genes in Close Proximity, Factor B, C2, and D17H6S45. Journal of Biological Chemistry, 1998, 273, 1699-1704.	3.4	60
105	Spi1 -14 Kb upstream regulatory element (URE) is not required for maintenance of PU.1 expression in macrophages. Wellcome Open Research, 0, 7, 154.	1.8	0