Diana Conte Camerino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258733/publications.pdf Version: 2024-02-01

		94433	149698
121	4,279	37	56
papers	citations	h-index	g-index
100	100	100	4050
123	123	123	4052
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced Dystrophic Progression in mdx Mice by Exercise and Beneficial Effects of Taurine and Insulin-Like Growth Factor-1. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 453-463.	2.5	179
2	Taurine: the appeal of a safe amino acid for skeletal muscle disorders. Journal of Translational Medicine, 2015, 13, 243.	4.4	163
3	Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE, 2012, 7, e33232.	2.5	144
4	Ion channel pharmacology. Neurotherapeutics, 2007, 4, 184-198.	4.4	124
5	Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Frontiers in Pharmacology, 2016, 7, 121.	3.5	121
6	Redox homeostasis, oxidative stress and disuse muscle atrophy. Journal of Physiology, 2011, 589, 2147-2160.	2.9	116
7	ls oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimbâ€unloaded mice. Experimental Physiology, 2010, 95, 331-350.	2.0	87
8	Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiology of Disease, 2005, 18, 356-365.	4.4	76
9	Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacological Research, 2010, 61, 553-563.	7.1	74
10	Decrease in resting calcium and calcium entry associated with slowâ€ŧoâ€fast transition in unloaded rat soleus muscle. FASEB Journal, 2003, 17, 1-25.	0.5	69
11	Acetazolamide opens the muscular K Ca 2+ channel: A novel mechanism of action that may explain the therapeutic effect of the drug in hypokalemic periodic paralysis. Annals of Neurology, 2000, 48, 304-312.	5.3	68
12	Molecular determinants of differential pore blocking of kidney CLCâ€K chloride channels. EMBO Reports, 2004, 5, 584-589.	4.5	68
13	Taurine and Skeletal Muscle Disorders. Neurochemical Research, 2004, 29, 135-142.	3.3	67
14	Fluvastatin and Atorvastatin Affect Calcium Homeostasis of Rat Skeletal Muscle Fibers in Vivo and in Vitro by Impairing the Sarcoplasmic Reticulum/Mitochondria Ca ²⁺ -Release System. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 626-634.	2.5	67
15	Molecular switch for CLC-K Cl ^{â^'} channel block/activation: Optimal pharmacophoric requirements towards high-affinity ligands. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1369-1373.	7.1	64
16	Hybrid assemblies of ATP-sensitive K+ channels determine their muscle-type-dependent biophysical and pharmacological properties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1118-1123.	7.1	59
17	Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatinâ€induced cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 386-404.	7.3	58
18	Optically Active Mexiletine Analogues as Stereoselective Blockers of Voltage-Gated Na+ Channels. Journal of Medicinal Chemistry, 2003, 46, 5238-5248.	6.4	57

#	Article	IF	CITATIONS
19	Activation and Inhibition of Kidney CLC-K Chloride Channels by Fenamates. Molecular Pharmacology, 2006, 69, 165-173.	2.3	55
20	Disuse of rat muscle <i>in vivo</i> reduces protein kinase C activity controlling the sarcolemma chloride conductance. Journal of Physiology, 2007, 584, 983-995.	2.9	55
21	Membrane ionic conductances in normal and denervated skeletal muscle of the rat during development. Pflugers Archiv European Journal of Physiology, 1989, 413, 568-570.	2.8	53
22	ClC-1 chloride channels: state-of-the-art research and future challenges. Frontiers in Cellular Neuroscience, 2015, 09, 156.	3.7	53
23	Effect of taurine depletion on excitation-contraction coupling and C1â^' conductance of rat skeletal muscle. European Journal of Pharmacology, 1996, 296, 215-222.	3.5	52
24	Molecular Requisites for Drug Binding to Muscle CLC-1 and Renal CLC-K Channel Revealed by the Use of Phenoxy-Alkyl Derivatives of 2-(p-Chlorophenoxy)Propionic Acid. Molecular Pharmacology, 2002, 62, 265-271.	2.3	51
25	Investigations of Pharmacologic Properties of the Renal CLC-K1 Chloride Channel Co-expressed with Barttin by the Use of 2-(p-Chlorophenoxy)Propionic Acid Derivatives and Other Structurally Unrelated Chloride Channels Blockers. Journal of the American Society of Nephrology: JASN, 2004, 15, 13-20.	6.1	48
26	Effect of microgravity on gene expression in mouse brain. Experimental Brain Research, 2008, 191, 289-300.	1.5	48
27	Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone. Neurobiology of Disease, 2006, 21, 372-380.	4.4	47
28	Therapeutic Approaches to Ion Channel Diseases. Advances in Genetics, 2008, 64, 81-145.	1.8	47
29	Preclinical evaluation of marketed sodium channel blockers in a rat model of myotonia discloses promising antimyotonic drugs. Experimental Neurology, 2014, 255, 96-102.	4.1	46
30	Involvement of voltage-gated sodium channels blockade in the analgesic effects of orphenadrine. Pain, 2009, 142, 225-235.	4.2	45
31	Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle. Neurobiology of Disease, 2008, 32, 243-253.	4.4	44
32	The K _{ATP} channel is a molecular sensor of atrophy in skeletal muscle. Journal of Physiology, 2010, 588, 773-784.	2.9	44
33	Different flecainide sensitivity of hNav1.4 channels and myotonic mutants explained by state-dependent block. Journal of Physiology, 2004, 554, 321-334.	2.9	42
34	A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. Journal of Human Genetics, 2013, 58, 581-587.	2.3	42
35	Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: Beneficial effect of pentoxifylline. Neurobiology of Disease, 2006, 24, 466-474.	4.4	40
36	Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes. Experimental Neurology, 2013, 248, 530-540.	4.1	40

#	Article	IF	CITATIONS
37	New 2-Aryloxy-3-phenyl-propanoic Acids As Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists with Improved Potency and Reduced Adverse Effects on Skeletal Muscle Function. Journal of Medicinal Chemistry, 2009, 52, 6382-6393.	6.4	39
38	Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinidesâ€induced atrophy in skeletal muscle. Pharmacology Research and Perspectives, 2014, 2, e00028.	2.4	39
39	Different Ability of Clenbuterol and Salbutamol to Block Sodium Channels Predicts Their Therapeutic Use in Muscle Excitability Disorders. Molecular Pharmacology, 2003, 63, 659-670.	2.3	37
40	Aging-associated down-regulation of ClC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance. FEBS Letters, 1999, 449, 12-16.	2.8	36
41	Mechanism of Block of Single Protopores of the Torpedo Chloride Channel Clc-0 by 2-(p-Chlorophenoxybutyric) Acid (Cpb). Journal of General Physiology, 2001, 118, 45-62.	1.9	36
42	Mechanisms of block of muscle type CLC chloride channels (Review). Molecular Membrane Biology, 2002, 19, 285-292.	2.0	36
43	Constrained analogues of tocainide as potent skeletal muscle sodium channel blockers towards the development of antimyotonic agents. European Journal of Medicinal Chemistry, 2008, 43, 2535-2540.	5.5	35
44	Splicing of the rSlo Gene Affects the Molecular Composition and Drug Response of Ca2+-Activated K+ Channels in Skeletal Muscle. PLoS ONE, 2012, 7, e40235.	2.5	34
45	Carbonic anhydrase inhibitors ameliorate the symptoms of hypokalaemic periodic paralysis in rats by opening the muscular Ca2+-activated-K+channels. Neuromuscular Disorders, 2006, 16, 39-45.	0.6	33
46	Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43, 431-445.	2.7	33
47	Phenotype-dependent functional and pharmacological properties of BK channels in skeletal muscle: Effects of microgravity. Neurobiology of Disease, 2005, 20, 296-302.	4.4	32
48	Dual response of the KATP channels to staurosporine: A novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes. Biochemical Pharmacology, 2014, 91, 266-275.	4.4	32
49	Targeting kidney CLC-K channels: Pharmacological profile in a human cell line versus Xenopus oocytes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2484-2491.	2.6	32
50	Involvement of KCa2+ channels in the local abnormalities and hyperkalemia following the ischemia-reperfusion injury of rat skeletal muscle. Neuromuscular Disorders, 2002, 12, 258-265.	0.6	31
51	Emerging Role of Calcium-Activated Potassium Channel in the Regulation of Cell Viability Following Potassium Ions Challenge in HEK293 Cells and Pharmacological Modulation. PLoS ONE, 2013, 8, e69551.	2.5	31
52	Modification by ageing of the tetrodotoxin-sensitive sodium channels in rat skeletal muscle fibres. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 37-46.	2.6	30
53	Optimal Requirements for High Affinity and Use-Dependent Block of Skeletal Muscle Sodium Channel by N-Benzyl Analogs of Tocainide-Like Compounds. Molecular Pharmacology, 2003, 64, 932-945.	2.3	30
54	Modulation of ATP-Sensitive K+Channel by Insulin in Rat Skeletal Muscle Fibers. Biochemical and Biophysical Research Communications, 1997, 232, 536-539.	2.1	29

#	Article	IF	CITATIONS
55	Phosphorylation and ICF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels. British Journal of Pharmacology, 1998, 125, 477-482.	5.4	29
56	Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading. European Journal of Applied Physiology, 2010, 110, 1215-1224.	2.5	29
57	Combined Modifications of Mexiletine Pharmacophores for New Lead Blockers of Nav1.4 Channels. Biophysical Journal, 2013, 104, 344-354.	0.5	29
58	Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita. NeuroMolecular Medicine, 2015, 17, 285-296.	3.4	29
59	Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances inÂvivo antimyotonic activity. Neuropharmacology, 2017, 113, 206-216.	4.1	29
60	Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Archiv European Journal of Physiology, 2020, 472, 961-975.	2.8	29
61	Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function. Neuromuscular Disorders, 1999, 9, 11-18.	0.6	28
62	Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle. Biochemical Pharmacology, 2011, 81, 1054-1064.	4.4	28
63	Synthesis and Toxicopharmacological Evaluation of <i>m</i> -Hydroxymexiletine, the First Metabolite of Mexiletine More Potent Than the Parent Compound on Voltage-Gated Sodium Channels. Journal of Medicinal Chemistry, 2012, 55, 1418-1422.	6.4	28
64	New potent mexiletine and tocainide analogues evaluated in vivo and in vitro as antimyotonic agents on the myotonic ADR mouse. Neuromuscular Disorders, 2004, 14, 405-416.	0.6	27
65	In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats. Journal of Hypertension, 2012, 30, 153-167.	0.5	27
66	Effects of aging on the mechanical threshold of rat skeletal muscle fibers. Pflugers Archiv European Journal of Physiology, 1992, 420, 407-409.	2.8	26
67	Effects of HMG-CoA reductase inhibitors on excitation–contraction coupling of rat skeletal muscle. European Journal of Pharmacology, 1999, 364, 43-48.	3.5	26
68	Stereospecific synthesis of ?para-hydroxymexiletine? and sodium channel blocking activity evaluation. Chirality, 2004, 16, 72-78.	2.6	26
69	Opening/blocking actions of pyruvate kinase antibodies on neuronal and muscular KATP channels. Pharmacological Research, 2012, 66, 401-408.	7.1	25
70	Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacological Research, 2019, 141, 224-235.	7.1	25
71	The impact of SARS-CoV-2 on skeletal muscles. Acta Myologica, 2020, 39, 307-312.	1.5	25
72	Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. British Journal of Pharmacology, 2000, 130, 827-834.	5.4	24

DIANA CONTE CAMERINO

#	Article	IF	CITATIONS
73	Dualistic actions of cromakalim and new potent 2H -1,4-benzoxazine derivatives on the native skeletal muscle KATP channel. British Journal of Pharmacology, 2003, 139, 255-262.	5.4	24
74	Multidisciplinary study of a new CICâ€1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies. FASEB Journal, 2016, 30, 3285-3295.	0.5	24
75	Involvement of 3Na+/2K+ ATP-ase and Pi-3 kinase in the response of skeletal muscle ATP-sensitive K+ channels to insulin. Neuromuscular Disorders, 2003, 13, 712-719.	0.6	23
76	Mechanism of Interaction of Niflumic Acid with Heterologously Expressed Kidney CLC-K Chloride Channels. Journal of Membrane Biology, 2007, 216, 73-82.	2.1	23
77	On the Metabolically Active Form of Metaglidasen: Improved Synthesis and Investigation of Its Peculiar Activity on Peroxisome Proliferatorâ€Activated Receptors and Skeletal Muscles. ChemMedChem, 2015, 10, 555-565.	3.2	23
78	A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Molecular and Cellular Neurosciences, 2017, 83, 6-12.	2.2	23
79	Structural requisites of 2-(p -chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1. British Journal of Pharmacology, 2003, 139, 1255-1264.	5.4	22
80	Translational approach to address therapy in myotonia permanens due to a new <i>SCN4A</i> mutation. Neurology, 2016, 86, 2100-2108.	1.1	22
81	Synthesis of New 2,6-Prolylxylidide Analogues of Tocainide as Stereoselective Blockers of Voltage-Gated Na+ Channels with Increased Potency and Improved Use-Dependent Activity. Journal of Medicinal Chemistry, 2000, 43, 3792-3798.	6.4	21
82	Reduced expression of Kir6.2/SUR2A subunits explains KATP deficiency in K+-depleted rats. Neuromuscular Disorders, 2008, 18, 74-80.	0.6	21
83	Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin. Toxicology and Applied Pharmacology, 2016, 306, 36-46.	2.8	21
84	<i>N</i> -Aryl-2,6-dimethylbenzamides, a New Generation of Tocainide Analogues as Blockers of Skeletal Muscle Voltage-Gated Sodium Channels. Journal of Medicinal Chemistry, 2014, 57, 2589-2600.	6.4	20
85	Increased rigidity of the chiral centre of tocainide favours stereoselectivity and use-dependent block of skeletal muscle Na+ channels enhancing the antimyotonic activity in vivo. British Journal of Pharmacology, 2001, 134, 1523-1531.	5.4	19
86	Pre-clinical trials in Duchenne dystrophy: what animal models can tell us about potential drug effectiveness. Neuromuscular Disorders, 2002, 12, S142-S146.	0.6	19
87	Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs. Chirality, 2010, 22, 299-307.	2.6	19
88	Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics, 2017, 18, 219-225.	1.4	19
89	Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation. PLoS ONE, 2015, 10, e0129686.	2.5	19
90	Searching for novel anti-myotonic agents: Pharmacophore requirement for use-dependent block of skeletal muscle sodium channels by N-benzylated cyclic derivatives of tocainide. Neuromuscular Disorders, 2012, 22, 56-65.	0.6	17

#	Article	IF	CITATIONS
91	In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography. Scientific Reports, 2016, 6, 20061.	3.3	17
92	Effects of chronic growth hormone treatment in aged rats on the biophysical and pharmacological properties of skeletal muscle chloride channels. British Journal of Pharmacology, 1997, 121, 369-374.	5.4	16
93	Pharmacovigilance database search discloses ClCâ€K channels as a novel target of the AT ₁ receptor blockers valsartan and olmesartan. British Journal of Pharmacology, 2017, 174, 1972-1983.	5.4	16
94	Different sulfonylurea and ATP sensitivity characterizes the juvenile and the adult form of KATP channel complex of rat skeletal muscle. European Journal of Pharmacology, 1997, 321, 369-378.	3.5	15
95	The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Human Mutation, 2018, 39, 1273-1283.	2.5	15
96	Ion Channels in Drug Discovery and Safety Pharmacology. Methods in Molecular Biology, 2018, 1800, 313-326.	0.9	15
97	Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo. Experimental Neurology, 2020, 328, 113287.	4.1	15
98	Experimental Evaluation of the Effects of Pravastatin on Electrophysiological Parameters of Rat Skeletal Muscle. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 325-329.	0.0	14
99	Increased hindrance on the chiral carbon atom of mexiletine enhances the block of rat skeletal muscle Na+ channels in a model of myotonia induced by ATX. British Journal of Pharmacology, 1999, 128, 1165-1174.	5.4	14
100	InÂvivo evaluation of antimyotonic efficacy of β-adrenergic drugs in a rat model of myotonia. Neuropharmacology, 2013, 65, 21-27.	4.1	14
101	Grand challenge for ion channels: an underexploited resource for therapeutics. Frontiers in Pharmacology, 2010, 1, 113.	3.5	13
102	Structural Nucleotide Analogs Are Potent Activators/Inhibitors of Pancreatic β Cell KATP Channels: An Emerging Mechanism Supporting Their Use as Antidiabetic Drugs. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 266-276.	2.5	13
103	Bisphosphonates Targeting Ion Channels and Musculoskeletal Effects. Frontiers in Pharmacology, 2022, 13, 837534.	3.5	13
104	Molecular Determinants for the Activating/Blocking Actions of the 2H-1,4-Benzoxazine Derivatives, a Class of Potassium Channel Modulators Targeting the Skeletal Muscle KATP Channels. Molecular Pharmacology, 2008, 74, 50-58.	2.3	12
105	Hydroxylated Analogs of Mexiletine as Tools for Structuralâ€Requirements Investigation of the Sodium Channel Blocking Activity. Archiv Der Pharmazie, 2010, 343, 325-332.	4.1	12
106	Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Frontiers in Pharmacology, 2017, 8, 907.	3.5	12
107	Changes of membrane electrical properties in extensor digitorum longus muscle from dystrophic (mdx) mice. Muscle and Nerve, 1995, 18, 1196-1198.	2.2	10
108	Antimyotonic effects of tocainide enantiomers on skeletal muscle fibers of congenitally myotonic goats. Neuromuscular Disorders, 2000, 10, 160-164.	0.6	10

Diana Conte Camerino

#	Article	IF	CITATIONS
109	Effects of ischaemia and post-ischaemic reperfusion on the passive and active electrical parameters of rat skeletal muscle fibres. Pflugers Archiv European Journal of Physiology, 1994, 426, 44-50.	2.8	9
110	Effects of high energy phosphates and l-arginine on the electrical parameters of ischemic-reperfused rat skeletal muscle fibers. European Journal of Pharmacology, 1995, 287, 17-25.	3.5	6
111	Paving the way for Bartter syndrome type 3 drug discovery: a hope from basic research. Journal of Physiology, 2017, 595, 5403-5404.	2.9	6
112	Regulation of resting ionic conductances in frog skeletal muscle. Pflugers Archiv European Journal of Physiology, 1993, 423, 189-192.	2.8	5
113	Effects of mexiletine on ATP sensitive K+ channel of rat skeletal muscle fibres: a state dependent mechanism of action. British Journal of Pharmacology, 1998, 125, 858-864.	5.4	5
114	Developmental changes of membrane electrical properties of rat skeletal muscle fibers produced by prenatal exposure to carbon monoxide. Environmental Toxicology and Pharmacology, 1996, 2, 213-221.	4.0	4
115	The Effect of Diphenylamine-2-carboxylate on C1â^ Channel Conductance and on Excitability Characteristics of Rat Skeletal Muscle. Journal of Pharmacy and Pharmacology, 2011, 41, 42-45.	2.4	4
116	Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres. Frontiers in Pharmacology, 2015, 6, 155.	3.5	4
117	Influence of pH on the responses of guinea-pig isolated trachea to sympathomimetic amines. Pharmacological Research Communications, 1984, 16, 999-1008.	0.2	1
118	Effects of dapiprazole on contractile responses of guinea pig isolated ileum. Pharmacological Research Communications, 1987, 19, 209-221.	0.2	1
119	Pharmacology of CLC Chloride Channels and Transporters. Advances in Molecular and Cell Biology, 2006, , 83-107.	0.1	1
120	Calcium Homeostasis Is Altered in Skeletal Muscle of Spontaneously Hypertensive Rats. American Journal of Pathology, 2014, 184, 2803-2815.	3.8	1
121	Therapeutic screening in the mdx mouse. Neuromuscular Disorders, 2000, 10, 233-234.	0.6	0