
Gerard Charles Dismukes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7254933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bridging the gap between Kok-type and kinetic models of photosynthetic electron transport within Photosystem II. Photosynthesis Research, 2022, 151, 83-102.	2.9	5
2	Evidence for a robust photosystem II in the photosynthetic amoeba <i>Paulinella</i> . New Phytologist, 2022, 234, 934-945.	7.3	1
3	Creating Functional Oxynitride–Silicon Interfaces and SrNbO ₂ N Thin Films for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2022, 126, 5970-5979.	3.1	1
4	Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?. Journal of Physical Chemistry B, 2022, 126, 3257-3268.	2.6	7
5	CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity. Electrochimica Acta, 2021, 391, 138889.	5.2	27
6	Surface Hydrides on Fe ₂ P Electrocatalyst Reduce CO ₂ at Low Overpotential: Steering Selectivity to Ethylene Glycol. Journal of the American Chemical Society, 2021, 143, 21275-21285.	13.7	34
7	Symbiosis extended: exchange of photosynthetic O2 and fungal-respired CO2 mutually power metabolism of lichen symbionts. Photosynthesis Research, 2020, 143, 287-299.	2.9	14
8	Highly efficient and durable III–V semiconductor-catalyst photocathodes <i>via</i> a transparent protection layer. Sustainable Energy and Fuels, 2020, 4, 1437-1442.	4.9	9
9	Water and vapor transport in algalâ€fungal lichen: Modeling constrained by laboratory experiments, an application for Flavoparmelia caperata. Plant, Cell and Environment, 2020, 43, 945-964.	5.7	2
10	Realtime kinetics of the light driven steps of photosynthetic water oxidation in living organisms by "stroboscopic―fluorometry. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148212.	1.0	6
11	Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry A, 2019, 7, 2400-2411.	10.3	25
12	Crossing the Thauer limit: rewiring cyanobacterial metabolism to maximize fermentative H ₂ production. Energy and Environmental Science, 2019, 12, 1035-1045.	30.8	10
13	â€~Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. Physiologia Plantarum, 2019, 166, 165-180.	5.2	15
14	The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates. ACS Catalysis, 2019, 9, 1396-1407.	11.2	12
15	Climbing the Volcano of Electrocatalytic Activity while Avoiding Catalyst Corrosion: Ni ₃ P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catalysis, 2018, 8, 4408-4419.	11.2	178
16	Rerouting of Metabolism into Desired Cellular Products by Nutrient Stress: Fluxes Reveal the Selected Pathways in Cyanobacterial Photosynthesis. ACS Synthetic Biology, 2018, 7, 1465-1476.	3.8	27
17	Reconciling Structural and Spectroscopic Fingerprints of the Oxygen-Evolving Complex of Photosystem II: A Computational Study of the S ₂ State. Journal of Physical Chemistry B, 2018, 122, 11868-11882.	2.6	10
18	Resolving Ambiguous Protonation and Oxidation States in the Oxygen Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2018, 122, 8654-8664.	2.6	22

#	Article	IF	CITATIONS
19	Selective CO ₂ reduction to C ₃ and C ₄ oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy and Environmental Science, 2018, 11, 2550-2559.	30.8	165
20	Desiccation tolerant lichens facilitate in vivo H/D isotope effect measurements in oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1039-1044.	1.0	3
21	Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. Advances in Experimental Medicine and Biology, 2018, 1080, 171-213.	1.6	12
22	Using Electrocatalysts To Find New Uses For Captured CO2. , 2018, , .		0
23	Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 276-287.	1.0	35
24	Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 873-883.	1.0	40
25	Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnology and Bioengineering, 2016, 113, 979-988.	3.3	13
26	The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1550-1560.	1.0	16
27	The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1380-1391.	1.0	19
28	Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex. Photosynthesis Research, 2016, 128, 141-150.	2.9	4
29	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156
30	X-ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry C, 2016, 120, 3326-3333.	3.1	24
31	Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy and Environmental Science, 2016, 9, 184-192.	30.8	81
32	Surface and Structural Investigation of a MnO _{<i>x</i>} Birnessiteâ€Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry - A European Journal, 2015, 21, 14218-14228.	3.3	29
33	Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga <i><scp>C</scp>hlamydomonas reinhardtii sta6</i> mutant. Plant Journal, 2015, 81, 947-960.	5.7	49
34	Tuning the Electrocatalytic Water Oxidation Properties of AB ₂ O ₄ Spinel Nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) Site Variants of LiMn ₂ O ₄ . ACS Catalysis, 2015, 5, 3403-3410.	11.2	74
35	Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society, 2015, 137, 15460-15468.	13.7	64
36	Warwick Hillier: a tribute. Photosynthesis Research, 2014, 122, 1-11.	2.9	3

#	Article	IF	CITATIONS
37	Metabolic switching of central carbon metabolism in response to nitrate: Application to autofermentative hydrogen production in cyanobacteria. Journal of Biotechnology, 2014, 182-183, 83-91.	3.8	15
38	What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry, 2014, 53, 2113-2121.	4.0	70
39	Engineered Photosystem II Reaction Centers Optimize Photochemistry versus Photoprotection at Different Solar Intensities. Journal of the American Chemical Society, 2014, 136, 4048-4055.	13.7	36
40	Entropy and enthalpy contributions to the kinetics of proton coupled electron transfer to the Mn ₄ O ₄ (O ₂ Ph ₂) ₆ cubane. Physical Chemistry Chemical Physics, 2014, 16, 11843-11847.	2.8	6
41	Evolutionary Origins of the Photosynthetic Water Oxidation Cluster: Bicarbonate Permits Mn ²⁺ Photoâ€oxidation by Anoxygenic Bacterial Reaction Centers. ChemBioChem, 2013, 14, 1725-1731.	2.6	25
42	Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. Energy and Environmental Science, 2013, 6, 3722.	30.8	44
43	Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum. Biomass and Bioenergy, 2013, 59, 306-315.	5.7	78
44	Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metabolic Engineering, 2013, 16, 56-67.	7.0	116
45	Natural Variants of Photosystem II Subunit D1 Tune Photochemical Fitness to Solar Intensity *. Journal of Biological Chemistry, 2013, 288, 5451-5462.	3.4	35
46	Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: A mathematical solution to asymmetric Markov chains. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 861-868.	1.0	25
47	Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annual Review of Biochemistry, 2013, 82, 577-606.	11.1	330
48	Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis. Journal of the American Chemical Society, 2013, 135, 3494-3501.	13.7	561
49	Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Biotechnology, 2013, 166, 65-75.	3.8	46
50	Identification of an Oxygenic Reaction Center psbADC Operon in the Cyanobacterium Gloeobacter violaceus PCC 7421. Molecular Biology and Evolution, 2012, 29, 35-38.	8.9	7
51	Metabolic Pathways for Photobiological Hydrogen Production by Nitrogenase- and Hydrogenase-containing Unicellular Cyanobacteria Cyanothece. Journal of Biological Chemistry, 2012, 287, 2777-2786.	3.4	40
52	Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. Journal of Biotechnology, 2012, 162, 97-104.	3.8	29
53	What Are the Oxidation States of Manganese Required To Catalyze Photosynthetic Water Oxidation?. Biophysical Journal, 2012, 103, 313-322.	0.5	72
54	Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum tricornutum Under Nitrate Deprivation. Bioenergy Research, 2012, 5, 876-885.	3.9	31

#	Article	IF	CITATIONS
55	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.9	22
56	Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water. Angewandte Chemie - International Edition, 2012, 51, 1616-1619.	13.8	150
57	An LC–MS-Based Chemical and Analytical Method for Targeted Metabolite Quantification in the Model Cyanobacterium Synechococcus sp. PCC 7002. Analytical Chemistry, 2011, 83, 3808-3816.	6.5	77
58	A Co ₄ O ₄ "Cubane―Water Oxidation Catalyst Inspired by Photosynthesis. Journal of the American Chemical Society, 2011, 133, 11446-11449.	13.7	331
59	Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta, 2011, 234, 829-843.	3.2	50
60	Photocatalytic oxygen evolution from non-potable water by a bioinspired molecular water oxidation catalyst. Journal of Molecular Catalysis A, 2011, , .	4.8	2
61	Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328. Applied and Environmental Microbiology, 2011, 77, 7185-7194.	3.1	22
62	Synechococcussp. Strain PCC 7002nifJMutant Lacking Pyruvate:Ferredoxin Oxidoreductase. Applied and Environmental Microbiology, 2011, 77, 2435-2444.	3.1	38
63	Bicarbonate Coordinates to Mn3+ during Photo-Assembly of the Catalytic Mn4Ca Core of Photosynthetic Water Oxidation: EPR Characterization. Applied Magnetic Resonance, 2010, 37, 137-150.	1.2	16
64	A Tandem Waterâ€ s plitting Device Based on a Bioâ€inspired Manganese Catalyst. ChemSusChem, 2010, 3, 1146-1150.	6.8	30
65	Direct Detection of Oxygen Ligation to the Mn ₄ Ca Cluster of Photosystem II by Xâ€ray Emission Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 800-803.	13.8	78
66	Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Applied and Environmental Microbiology, 2010, 76, 5032-5038.	3.1	142
67	Water Oxidation by λ-MnO ₂ : Catalysis by the Cubical Mn ₄ O ₄ Subcluster Obtained by Delithiation of Spinel LiMn ₂ O ₄ . Journal of the American Chemical Society, 2010, 132, 11467-11469.	13.7	267
68	Increased Lipid Accumulation in the Chlamydomonas reinhardtii <i>sta7-10</i> Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains. Eukaryotic Cell, 2010, 9, 1251-1261.	3.4	317
69	Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst. Journal of the American Chemical Society, 2010, 132, 2892-2894.	13.7	414
70	Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria. Applied and Environmental Microbiology, 2010, 76, 6455-6462.	3.1	86
71	Homogeneous Catalysts with a Mechanical ("Machineâ€ŀikeâ€) Action. Chemistry - A European Journal, 2009, 15, 4746-4759.	3.3	20
72	Identification and quantification of waterâ€soluble metabolites by cryoprobeâ€assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation. Magnetic Resonance in Chemistry, 2009, 47, S138-46.	1.9	24

#	Article	IF	CITATIONS
73	Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. Journal of Biotechnology, 2009, 142, 21-30.	3.8	70
74	Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Transactions, 2009, , 9374.	3.3	124
75	Photosynthetic Oxygen Evolution Is Not Reversed at High Oxygen Pressures: Mechanistic Consequences for the Water-Oxidizing Complex. Biochemistry, 2009, 48, 1381-1389.	2.5	39
76	Sustained Water Oxidation by [Mn ₄ O ₄] ⁷⁺ Core Complexes Inspired by Oxygenic Photosynthesis. Inorganic Chemistry, 2009, 48, 7269-7279.	4.0	83
77	Development of Bioinspired Mn ₄ 0 ₄ â^`Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Accounts of Chemical Research, 2009, 42, 1935-1943.	15.6	510
78	Electrochemical investigation of Mn4O4-cubane water-oxidizing clusters. Physical Chemistry Chemical Physics, 2009, 11, 6441.	2.8	48
79	Photoassembly of the water-oxidizing complex in photosystem II. Coordination Chemistry Reviews, 2008, 252, 347-360.	18.8	163
80	Sustained Water Oxidation Photocatalysis by a Bioinspired Manganese Cluster. Angewandte Chemie - International Edition, 2008, 47, 7335-7338.	13.8	269
81	Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 2008, 19, 235-240.	6.6	620
82	Renewable hydrogen production by cyanobacteria: Nickel requirements for optimal hydrogenase activity. International Journal of Hydrogen Energy, 2008, 33, 2014-2022.	7.1	53
83	Mechanism of H ₂ Production by the [FeFe] _H Subcluster of Di-Iron Hydrogenases: Implications for Abiotic Catalysts. Journal of Physical Chemistry B, 2008, 112, 13381-13390.	2.6	12
84	Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium " <i>Arthrospira</i> (<i>Spirulina</i>) <i>maxima</i> ― Applied and Environmental Microbiology, 2008, 74, 6102-6113.	3.1	113
85	Calcium controls the assembly of the photosynthetic water-oxidizing complex: a cadmium(II) inorganic mutant of the Mn ₄ Ca core. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1253-1261.	4.0	18
86	Self-Assembled Monolayer of Organic Iodine on a Au Surface for Attachment of Redox-Active Metal Clusters. Langmuir, 2007, 23, 8257-8263.	3.5	12
87	ESEEM Spectroscopy Reveals Carbonate and an Nâ€Donor Proteinâ€Ligand Binding to Mn ²⁺ in the Photoassembly Reaction of the Mn ₄ Ca Cluster in Photosystemâ€II. Angewandte Chemie - International Edition, 2007, 46, 8028-8031.	13.8	18
88	Lightâ€dependent oxygen consumption in nitrogenâ€fixing cyanobacteria plays a key role in nitrogenase protection ¹ . Journal of Phycology, 2007, 43, 845-852.	2.3	103
89	In vivo bicarbonate requirement for water oxidation by Photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima. Journal of Inorganic Biochemistry, 2007, 101, 1865-1874.	3.5	21
90	Tuning the Photoinduced O2-Evolving Reactivity of Mn4O47+, Mn4O46+, and Mn4O3(OH)6+ Manganeseâ^'Oxo Cubane Complexes. Inorganic Chemistry, 2006, 45, 189-195.	4.0	60

#	Article	IF	CITATIONS
91	Prospecting for biohydrogen fuel. Industrial Biotechnology, 2006, 2, 133-137.	0.8	10
92	Carbonate Complexation of Mn2+in the Aqueous Phase:Â Redox Behavior and Ligand Binding Modes by Electrochemistry and EPR Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 5099-5111.	2.6	44
93	Quantitative Assessment of Intrinsic Carbonic Anhydrase Activity and the Capacity for Bicarbonate Oxidation in Photosystem II. Biochemistry, 2006, 45, 2094-2102.	2.5	48
94	Spectroscopic Evidence for Ca2+Involvement in the Assembly of the Mn4Ca Cluster in the Photosynthetic Water-Oxidizing Complexâ€. Biochemistry, 2006, 45, 12876-12889.	2.5	50
95	How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynthesis Research, 2005, 84, 355-365.	2.9	113
96	Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochemical and Photobiological Sciences, 2005, 4, 957.	2.9	284
97	Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of Photosystem II. Photochemical and Photobiological Sciences, 2005, 4, 991.	2.9	35
98	Consequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonate. Physical Chemistry Chemical Physics, 2004, 6, 4793.	2.8	56
99	Trapping an Elusive Intermediate in Manganeseâ	4.0	52
100	Oxidation potentials and electron donation to photosystem II of manganese complexes containing bicarbonate and carboxylate ligands. Physical Chemistry Chemical Physics, 2004, 6, 4905.	2.8	54
101	Transition from Hydrogen Atom to Hydride Abstraction by Mn4O4(O2PPh2)6versus [Mn4O4(O2PPh2)6]+:Â Oâ~H Bond Dissociation Energies and the Formation of Mn4O3(OH)(O2PPh2)6. Inorganic Chemistry, 2003, 42, 2849-2858.	4.0	51
102	Kinetics of proton-coupled electron-transfer reactions to the manganese-oxo "cubane" complexes containing the Mn4OFormula and Mn4OFormula core types. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3707-3712.	7.1	46
103	Selective Photoproduction of O2 from the Mn4O4 Cubane Core: A Structural and Functional Model for the Photosynthetic Water-Oxidizing Complex. Angewandte Chemie - International Edition, 2001, 40, 2925-2928.	13.8	88
104	Conversion of Core Oxos to Water Molecules by 4e-/4H+Reductive Dehydration of the Mn4O26+Core in the Manganeseâ^'Oxo Cubane Complex Mn4O4(Ph2PO2)6:Â A Partial Model for Photosynthetic Water Binding and Activation. Inorganic Chemistry, 2000, 39, 1021-1027.	4.0	63
105	Bicarbonate Accelerates Assembly of the Inorganic Core of the Water-Oxidizing Complex in Manganese-Depleted Photosystem II:  A Proposed Biogeochemical Role for Atmospheric Carbon Dioxide in Oxygenic Photosynthesis. Biochemistry, 2000, 39, 6060-6065.	2.5	74
106	Protonation and Dehydration Reactions of the Mn4O4L6Cubane and Synthesis and Crystal Structure of the Oxidized Cubane [Mn4O4L6]+: A Model for the Photosynthetic Water Oxidizing Complex. Inorganic Chemistry, 1999, 38, 1036-1037.	4.0	96
107	Remarkable Affinity and Selectivity for Cs+ and Uranyl (UO22+) Binding to the Manganese Site of the Apo-Water Oxidation Complex of Photosystem II. Biochemistry, 1999, 38, 7200-7209.	2.5	43
108	Synthetic Catalysts for Non-biological Water Oxidation: Comparison to the photosynthetic water oxidation complex. , 1999, , 330-363.		1

#	Article	IF	CITATIONS
109	Distance-Dependent Enhanced ENDOR Phase (DEEP) Spectroscopy and Its Application to Determination of Solvation Structure around Paramagnetic Ions in Disordered Solids:  The Three Ordered Hydration Shells of Aquated Transition Ions. Journal of Physical Chemistry B, 1998, 102, 8306-8313.	2.6	2
110	l-Arginine Binding to Liver Arginase Requires Proton Transfer to Gateway Residue His141 and Coordination of the Guanidinium Group to the Dimanganese(II,II) Centerâ€. Biochemistry, 1998, 37, 8539-8550.	2.5	62
111	Selenium-Containing Formate Dehydrogenase H fromEscherichia coli:Â A Molybdopterin Enzyme That Catalyzes Formate Oxidation without Oxygen Transfer. Biochemistry, 1998, 37, 3518-3528.	2.5	136
112	Calcium Induces Binding and Formation of a Spin-Coupled Dimanganese(II,II) Center in the Apo-Water Oxidation Complex of Photosystem II as Precursor to the Functional Tetra-Mn/Ca Clusterâ€. Biochemistry, 1997, 36, 11342-11350.	2.5	53
113	Quantitative Kinetic Model for Photoassembly of the Photosynthetic Water Oxidase from Its Inorganic Constituents: Requirements for Manganese and Calcium in the Kinetically Resolved Stepsâ€,‡. Biochemistry, 1997, 36, 8914-8922.	2.5	90
114	Synthetic Water-Oxidation Catalysts for Artificial Photosynthetic Water Oxidationâ€. Chemical Reviews, 1997, 97, 1-24.	47.7	734
115	Synthesis and Characterization of Mn4O4L6Complexes with Cubane-like Core Structure:Â A New Class of Models of the Active Site of the Photosynthetic Water Oxidase. Journal of the American Chemical Society, 1997, 119, 6670-6671.	13.7	140
116	Manganese Enzymes with Binuclear Active Sites. Chemical Reviews, 1996, 96, 2909-2926.	47.7	502
117	High-Resolution Kinetic Studies of the Reassembly of the Tetra-Manganese Cluster of Photosynthetic Water Oxidation: Proton Equilibrium, Cations, and Electrostaticsâ€. Biochemistry, 1996, 35, 14608-14617.	2.5	67
118	The Conformation of the Isoprenyl Chain Relative to the Semiquinone Head in the Primary Electron Acceptor (QA) of Higher Plant PSII (Plastosemiquinone) Differs from that in Bacterial Reaction Centers (Ubisemiquinone or Menasemiquinone) by ca. 90°â€,‡. Biochemistry, 1996, 35, 8955-8963.	2.5	33
119	Assembly of the Tetra-Mn Site of Photosynthetic Water Oxidation by Photoactivation:Â Mn Stoichiometry and Detection of a New Intermediateâ€. Biochemistry, 1996, 35, 4102-4109.	2.5	83
120	Investigation of the Differences in the Local Protein Environments Surrounding Tyrosine Radicals YZ• and YD• in Photosystem II Using Wild-Type and the D2-Tyr160Phe Mutant of Synechocystis 6803. Biochemistry, 1996, 35, 1475-1484.	2.5	100
121	Orbital Configuration of the Valence Electrons, Ligand Field Symmetry, and Manganese Oxidation States of the Photosynthetic Water Oxidizing Complex: Analysis of the S2State Multiline EPR Signalsâ€. Inorganic Chemistry, 1996, 35, 3307-3319.	4.0	198
122	Protein Coordination to Manganese Determines the High Catalytic Rate of Dimanganese Catalases. Comparison to Functional Catalase Mimics. Biochemistry, 1994, 33, 15433-15436.	2.5	70
123	Inhibition of the catalase reaction of Photosystem II by anions. Photosynthesis Research, 1993, 38, 433-440.	2.9	15
124	Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry, 1993, 32, 13742-13748.	2.5	122
125	Molecular mechanism of photosynthetic oxygen evolution. A theoretical approach. Journal of the American Chemical Society, 1992, 114, 4374-4382.	13.7	76
126	A new mechanism-based inhibitor of photosynthetic water oxidation: acetone hydrazone. 1. Equilibrium reactions. Biochemistry, 1990, 29, 7759-7767.	2.5	3

GERARD CHARLES DISMUKES

#	Article	IF	CITATIONS
127	A new mechanism-based inhibitor of photosynthetic water oxidation: acetone hydrazone. 2. Kinetic probes. Biochemistry, 1990, 29, 7767-7773.	2.5	6
128	A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry, 1989, 28, 9459-9464.	2.5	162
129	A New Class of Potential Mechanism-Based Suicide Inhibitors of Photosynthetic Activity. , 1989, , 247-250.		0
130	Inhibition of electron transport in photosystem II by hydroxylamine: further evidence for two binding sites. Biochemistry, 1988, 27, 6297-6306.	2.5	18
131	A Comparison of the Manganese Center Responsible for Photosynthetic Water Oxidation in O ₂ â€Evolving Core Particles and Photosystem II Enriched Membranes: EPR of the S ₂ State. Israel Journal of Chemistry, 1988, 28, 103-108.	2.3	5
132	Binuclear manganese(III) complexes of potential biological significance. Journal of the American Chemical Society, 1987, 109, 1435-1444.	13.7	258
133	Substitution of copper(2+) in the reaction center diquinone electron acceptor complex of Rhodobacter sphaeroides: determination of the metal-ligand coordination. Biochemistry, 1987, 26, 5049-5055.	2.5	19
134	Mn2+/Mn3+ and Mn3+/Mn4+ mixed valence binuclear manganese complexes of biological interest. Journal of the American Chemical Society, 1987, 109, 7202-7203.	13.7	66
135	THE METAL CENTERS OF THE PHOTOSYNTHETIC OXYGENâ€EVOLVING COMPLEX *. Photochemistry and Photobiology, 1986, 43, 99-115.	2.5	199
136	THE ORGANIZATION AND FUNCTION OF MANGANESE IN THE WATER-OXIDIZING COMPLEX OF PHOTOSYNTHESIS11Supported by the Department of Energy Soleras Program Grant No. 84CH10199 and the National Science Foundation Grant No. CHE82-17920 , 1986, , 275-309.		6
137	Models for the photosynthetic water oxidizing enzyme. 1. A binuclear manganese(III)-β-cyclodextrin complex. Journal of the American Chemical Society, 1983, 105, 124-125.	13.7	63
138	EPR EVIDENCE FOR THE INVOLVEMENT OF A DISCRETE MANGANESE CLUSTER IN O2 EVOLUTION1,1Supported by a Searle Scholars Award and grants by the USDA CRGO and the SERI division of the DOE, grant no. DE-FGO2–80CS84003 A003.22This article is dedicated to the memory of Professor Allen Scattergood , 1983, , 145-158.		6
139	Mixed valence interactions in dimuoxo bridged manganese complexes. Electron paramagnetic resonance and magnetic susceptibility studies. Journal of the American Chemical Society, 1978, 100, 7248-7252.	13.7	206