Samantha N Macmillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/725458/publications.pdf

Version: 2024-02-01

104 papers 3,068 citations

30 h-index 51 g-index

106 all docs

106 docs citations

106 times ranked 3959 citing authors

#	Article	IF	CITATIONS
1	Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure. Inorganic Chemistry, 2022, 61, 1644-1658.	1.9	7
2	Attempts at generating metathesis-active Fe(IV) and Co(IV) complexes via the reactions of (silox)2M(THF)2, [(silox)3M][Na(THF)2] ($M\hat{A}=\hat{A}$ Fe, Co), and related species with propellanes and triphenylboron. Polyhedron, 2022, 215, 115656.	1.0	2
3	Electronic Structure of Ru ₂ ⁶⁺ Complexes with Electron-Rich Anilinopyridinate Ligands. Inorganic Chemistry, 2022, 61, 3443-3457.	1.9	2
4	Synthesis of Aminosilane Chemical Vapor Deposition Precursors and Polycarbosilazanes through Manganese-Catalyzed Si–N Dehydrocoupling. ACS Sustainable Chemistry and Engineering, 2022, 10, 4218-4226.	3.2	8
5	Controlling Tautomerization in Pyridineâ€Fused Phosphorusâ€Nitrogen Heterocycles. Chemistry - A European Journal, 2022, 28, .	1.7	3
6	H ₂ Activation across Manganese(I)–C Bonds: Atypical Metal–Ligand Cooperativity in the Aromatization/Dearomatization Paradigm. Organometallics, 2022, 41, 67-75.	1.1	7
7	Chelating the Alpha Therapy Radionuclides ²²⁵ Ac ³⁺ and ²¹³ Bi ³⁺ with 18-Membered Macrocyclic Ligands Macrodipa and Py-Macrodipa. Inorganic Chemistry, 2022, 61, 801-806.	1.9	15
8	Activation of H ₂ with Dinuclear Manganese(I)-Phosphido Complexes. Organometallics, 2022, 41, 60-66.	1.1	7
9	Reversible Photoisomerization in a Ru <i>cis</i> -Dihydride Catalyst Accessed through Atypical Metal–Ligand Cooperative H ₂ Activation: Photoenhanced Acceptorless Alcohol Dehydrogenation. Organometallics, 2022, 41, 93-98.	1.1	7
10	Hydrogenative Catalysis with Threeâ€Coordinate Zinc Complexes Supported with PN Ligands is Enhanced Compared to PNP Analogs. Chemistry - A European Journal, 2022, 28, .	1.7	4
11	Benchâ€Stable Dinuclear Mn(I) Catalysts in <i>E</i> À€Selective Alkyne Semihydrogenation: A Mechanistic Investigation**. Chemistry - A European Journal, 2022, 28, .	1.7	4
12	H ₂ BZmacropa-NCS: A Bifunctional Chelator for Actinium-225 Targeted Alpha Therapy. Bioconjugate Chemistry, 2022, 33, 1222-1231.	1.8	16
13	A Facially Coordinating Trisâ€Benzimidazole Ligand for Nonheme Iron Enzyme Models. European Journal of Inorganic Chemistry, 2021, 2021, 654-657.	1.0	1
14	Synthesis and coordination of a tert-butyl functionalized facially coordinating 2-histidine-1-carboxylate model ligand. Journal of Coordination Chemistry, 2021, 74, 315-320.	0.8	1
15	Tuning the Kinetic Inertness of Bi ³⁺ Complexes: The Impact of Donor Atoms on Diaza-18-Crown-6 Ligands as Chelators for ²¹³ Bi Targeted Alpha Therapy. Inorganic Chemistry, 2021, 60, 9199-9211.	1.9	22
16	Py-Macrodipa: A Janus Chelator Capable of Binding Medicinally Relevant Rare-Earth Radiometals of Disparate Sizes. Journal of the American Chemical Society, 2021, 143, 10429-10440.	6.6	30
17	An Isolable Mononuclear Palladium(I) Amido Complex. Journal of the American Chemical Society, 2021, 143, 10751-10759.	6.6	11
18	A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant. Angewandte Chemie, 2021, 133, 21728-21734.	1.6	0

#	Article	IF	CITATIONS
19	A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant. Angewandte Chemie - International Edition, 2021, 60, 21558-21564.	7.2	10
20	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused s â€Indacenes and Dicyclopenta[b,g]naphthalenes. Angewandte Chemie, 2021, 133, 22559-22566.	1.6	1
21	A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ringâ€Opening of Benzofuranâ€fused <i>>s</i> à€Indacenes and Dicyclopenta[<i>b</i> , <i>g</i>]naphthalenes. Angewandte Chemie - International Edition, 2021, 60, 22385-22392.	7.2	21
22	Isolation and X-ray Crystal Structure of an Electrogenerated TEMPO–N ₃ Charge-Transfer Complex. Organic Letters, 2021, 23, 454-458.	2.4	12
23	Propellanes as Drop-In ROMP Initiators. Organometallics, 2021, 40, 3389-3396.	1.1	3
24	Reversible C–C Bond Formation, Halide Abstraction, and Electromers in Complexes of Iron Containing Redox-Noninnocent Pyridine-imine Ligands. Inorganic Chemistry, 2021, 60, 18662-18673.	1.9	6
25	A robust nickel catalyst with an unsymmetrical propyl-bridged diphosphine ligand for catalyst-transfer polymerization. Polymer Journal, 2020, 52, 83-92.	1.3	7
26	N ₂ O Reductase Activity of a [Cu ₄ S] Cluster in the 4Cu ^I Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie - International Edition, 2020, 59, 627-631.	7.2	22
27	N 2 O Reductase Activity of a [Cu 4 S] Cluster in the 4Cu I Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie, 2020, 132, 637-641.	1.6	3
28	Molecule Isomerism Modulates the Diradical Properties of Stable Singlet Diradicaloids. Journal of the American Chemical Society, 2020, 142, 1548-1555.	6.6	65
29	Synthesis, characterization, and biological properties of rhenium(I) tricarbonyl complexes bearing nitrogen-donor ligands. Journal of Organometallic Chemistry, 2020, 907, 121064.	0.8	20
30	Catalyst-Controlled Regioselective Carbonylation of Isobutylene Oxide to Pivalolactone. ACS Catalysis, 2020, 10, 12537-12543.	5 . 5	8
31	Planar-Locked Ru-PNN Catalysts in 1-Phenylethanol Dehydrogenation. Organometallics, 2020, 39, 3628-3644.	1.1	9
32	Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions. Journal of the American Chemical Society, 2020, 142, 13500-13506.	6.6	37
33	Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Organic Letters, 2020, 22, 6026-6030.	2.4	14
34	Late-Stage Modification of Electronic Properties of Antiaromatic and Diradicaloid Indeno[1,2- <i>b</i>]fluorene Analogues via Sulfur Oxidation. Journal of Organic Chemistry, 2020, 85, 10846-10857.	1.7	21
35	Monoradicals and Diradicals of Dibenzofluoreno[3,2- <i>b</i>) Illuorene Isomers: Mechanisms of Electronic Delocalization. Journal of the American Chemical Society, 2020, 142, 20444-20455.	6.6	43
36	A Mononuclear and High-Spin Tetrahedral Ti ^{II} Complex. Inorganic Chemistry, 2020, 59, 17834-17850.	1.9	12

#	Article	lF	Citations
37	Mechanistic Study of Isotactic Poly(propylene oxide) Synthesis using a Tethered Bimetallic Chromium Salen Catalyst. ACS Catalysis, 2020, 10, 8960-8967.	5.5	13
38	The influences of carbon donor ligands on biomimetic multi-iron complexes for N ₂ reduction. Chemical Science, 2020, 11, 12710-12720.	3.7	17
39	Scrutinizing "Ligand Bands―via Polarized Single-Crystal X-ray Absorption Spectra of Copper(I) and Copper(II) Bis-2,2′-bipyridine Species. Inorganic Chemistry, 2020, 59, 13416-13426.	1.9	5
40	Structure, Spectroscopy, and Reactivity of a Mononuclear Copper Hydroxide Complex in Three Molecular Oxidation States. Journal of the American Chemical Society, 2020, 142, 12265-12276.	6.6	25
41	Oxyaapa: A Picolinate-Based Ligand with Five Oxygen Donors that Strongly Chelates Lanthanides. Inorganic Chemistry, 2020, 59, 5116-5132.	1.9	14
42	Unrealized concepts of masked alkylidenes in (PNP)FeXY systems and alternative approaches to LnXmFe(IV)=CHR. Polyhedron, 2020, 181, 114460.	1.0	6
43	Probing the electronic and mechanistic roles of the $\hat{l}^{1}/\!\!\!/4 < \text{sub} > 4 < / \text{sub} > - \text{sulfur atom in a synthetic}$ Cu $< \text{sub} > Z < / \text{sub} > \text{model system.}$ Chemical Science, 2020, 11, 3441-3447.	3.7	8
44	A hemilabile manganese(<scp>i</scp>)–phenol complex and its coordination induced O–H bond weakening. Dalton Transactions, 2020, 49, 16217-16225.	1.6	3
45	Carbonylative, Catalytic Deoxygenation of 2,3-Disubstituted Epoxides with Inversion of Stereochemistry: An Alternative Alkene Isomerization Method. Journal of the American Chemical Society, 2020, 142, 8029-8035.	6.6	19
46	The 4-Electron Cleavage of a Nâ•N Double Bond by a Trimetallic TiNi2 Complex. Inorganic Chemistry, 2019, 58, 11762-11772.	1.9	11
47	Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. Journal of the American Chemical Society, 2019, 141, 17533-17547.	6.6	36
48	Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation. Journal of the American Chemical Society, 2019, 141, 16865-16876.	6.6	15
49	The Myth of d ⁸ Copper(III). Journal of the American Chemical Society, 2019, 141, 18508-18520.	6.6	139
50	\hat{l}^2 -Amino Phosphine Mn Catalysts for 1,4-Transfer Hydrogenation of Chalcones and Allylic Alcohol Isomerization. Organometallics, 2019, 38, 4387-4391.	1.1	22
51	Synthesis of 2 <i>H</i> -Chromenes via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. ACS Catalysis, 2019, 9, 9259-9264.	5. 5	31
52	Physical properties, ligand substitution reactions, and biological activity of Co(<scp>iii</scp>)-Schiff base complexes. Dalton Transactions, 2019, 48, 5987-6002.	1.6	21
53	Resurgence of Organomanganese(I) Chemistry. Bidentate Manganese(I) Phosphine–Phenol(ate) Complexes. Inorganic Chemistry, 2019, 58, 10527-10535.	1.9	8
54	Switchable living nickel(<scp>ii</scp>) α-diimine catalyst for ethylene polymerisation. Chemical Communications, 2019, 55, 7607-7610.	2.2	43

#	Article	IF	CITATIONS
55	Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of <i>trans</i> -cyclooctene derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9729-9734.	3.3	118
56	Electronically varied manganese tris-arylacetamide tripodal complexes. Journal of Coordination Chemistry, 2019, 72, 1287-1297.	0.8	2
57	Pseudoephedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. Journal of the American Chemical Society, 2019, 141, 5444-5460.	6.6	12
58	Oxidative Additions to Ti(IV) in [(dadi) ^{4â€"}]Ti ^{IV} (THF) Involve Carbonâ€"Carbon Bond Formation and Redox-Noninnocent Behavior. Organometallics, 2019, 38, 1502-1515.	1.1	7
59	An Approach to Carbide-Centered Cluster Complexes. Inorganic Chemistry, 2019, 58, 4812-4819.	1.9	14
60	Combinatorial Synthesis to Identify a Potent, Necrosis-Inducing Rhenium Anticancer Agent. Inorganic Chemistry, 2019, 58, 3895-3909.	1.9	43
61	Diastereo- and Enantioselective Formal $[3+2]$ Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay. Journal of the American Chemical Society, 2018, 140, 3514-3517.	6.6	107
62	Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines. Inorganic Chemistry, 2018, 57, 1311-1331.	1.9	121
63	Dispersion forces play a role in (Me ₂ IPr)Fe(î€NAd)R ₂ (Ad = adamantyl; R =) Tj ETQq1 1 Transactions, 2018, 47, 6025-6030.	0.784314 1 . 6	rgBT /Ove <mark>rlo</mark> 15
64	Structural diversity in pyridine and polypyridine adducts of ring slipped manganocene: correlating ligand steric bulk with quantified deviation from ideal hapticity. Dalton Transactions, 2018, 47, 5171-5180.	1.6	5
65	Rapid Dissolution of BaSO ₄ by Macropa, an 18-Membered Macrocycle with High Affinity for Ba ²⁺ . Journal of the American Chemical Society, 2018, 140, 17071-17078.	6.6	45
66	Complexes of [(dadi)Ti(L/X)] ^{<i>m</i>} That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbonâ€"Carbon Bond. Organometallics, 2018, 37, 3488-3501.	1.1	13
67	The Hydrazine–O ₂ Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[<i>c</i>]cinnolineâ€Catalyzed Oxidation of Alkyl Halides to Aldehydes. Angewandte Chemie - International Edition, 2018, 57, 12494-12498.	7.2	14
68	The Hydrazine–O 2 Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[c]cinnolineâ€Catalyzed Oxidation of Alkyl Halides to Aldehydes. Angewandte Chemie, 2018, 130, 12674-12678.	1.6	3
69	Bisphosphine phenol and phenolate complexes of Mn(<scp>i</scp>): manganese(<scp>i</scp>) catalyzed Tishchenko reaction. Dalton Transactions, 2018, 47, 12652-12655.	1.6	14
70	Deciphering the mechanism of O $<$ sub $>$ 2 $<$ /sub $>$ reduction with electronically tunable non-heme iron enzyme model complexes. Chemical Science, 2018, 9, 5773-5780.	3.7	9
71	Synthetic Methods for the Preparation of a Functional Analogue of Ru360, a Potent Inhibitor of Mitochondrial Calcium Uptake. Inorganic Chemistry, 2017, 56, 3123-3126.	1.9	26
72	X-ray Spectroscopic Interrogation of Transition-Metal-Mediated Homogeneous Catalysis: Primer and Case Studies. ACS Catalysis, 2017, 7, 1776-1791.	5 . 5	55

#	Article	IF	CITATIONS
73	Redox non-innocence permits catalytic nitrene carbonylation by (dadi)Tiî€NAd (Ad = adamantyl). Chemical Science, 2017, 8, 3410-3418.	3.7	39
74	Bis(thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorganic Chemistry, 2017, 56, 6609-6623.	1.9	82
75	High- and low-spin chelate complexes of iron featuring β-C,X-CH2C6H4X (XÂ= NMe2, PMe2, PPh2) and β-C,P-CH2PMe2 ligands. Journal of Organometallic Chemistry, 2017, 847, 132-139.	0.8	1
76	An Eighteenâ€Membered Macrocyclic Ligand for Actiniumâ€225 Targeted Alpha Therapy. Angewandte Chemie, 2017, 129, 14904-14909.	1.6	9
77	Dinuclear nitrido-bridged ruthenium complexes bearing diimine ligands. Dalton Transactions, 2017, 46, 14256-14263.	1.6	8
78	In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes. Journal of the American Chemical Society, 2017, 139, 14302-14314.	6.6	147
79	An Eighteenâ€Membered Macrocyclic Ligand for Actiniumâ€225 Targeted Alpha Therapy. Angewandte Chemie - International Edition, 2017, 56, 14712-14717.	7.2	163
80	Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of $\langle i \rangle N \langle i \rangle$ -Acylaziridines and Alkenes. Journal of the American Chemical Society, 2017, 139, 12141-12144.	6.6	120
81	Electronic Structural Analysis of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for Copper(I)–Oxoammonium Character. Journal of the American Chemical Society, 2017, 139, 13507-13517.	6.6	53
82	Direct Comparison of C–H Bond Amination Efficacy through Manipulation of Nitrogen-Valence Centered Redox: Imido versus Iminyl. Journal of the American Chemical Society, 2017, 139, 14757-14766.	6.6	105
83	Rare Examples of Fe(IV) Alkyl-Imide Migratory Insertions: Impact of Feâ€"C Covalency in (Me ₂ IPr)Fe(â•NAd)R ₂ (R = ^{neo} Pe, 1-nor). Journal of the American Chemical Society, 2017, 139, 12145-12148.	6.6	42

#	ARTICLE	IF	CITATIONS
91	Spectroscopic Evidence for a 3d ¹⁰ Ground State Electronic Configuration and Ligand Field Inversion in [Cu(CF ₃) ₄] ^{1â€"} . Journal of the American Chemical Society, 2016, 138, 1922-1931.	6.6	99
92	Neutral Fe(<scp>iv</scp>) alkylidenes, including some that bind dinitrogen. Chemical Communications, 2016, 52, 3891-3894.	2.2	33
93	Stabilizing Coordinated Radicals via Metal–Ligand Covalency: A Structural, Spectroscopic, and Theoretical Investigation of Group 9 Tris(dithiolene) Complexes. Inorganic Chemistry, 2015, 54, 3660-3669.	1.9	15
94	Ligand-Sensitive But Not Ligand-Diagnostic: Evaluating Cr Valence-to-Core X-ray Emission Spectroscopy as a Probe of Inner-Sphere Coordination. Inorganic Chemistry, 2015, 54, 205-214.	1.9	32
95	Facile Si–H bond activation and hydrosilylation catalysis mediated by a nickel–borane complex. Chemical Science, 2014, 5, 590-597.	3.7	128
96	Insertion Reactions and Catalytic Hydrophosphination by Triamidoamine-Supported Zirconium Complexes. Organometallics, 2010, 29, 2557-2565.	1.1	75
97	Chiral-at-metal tetrahydrosalen complexes of resolved titanium(IV) sec-butoxides: Ligand wrapping and multiple asymmetric catalytic induction. Inorganica Chimica Acta, 2009, 362, 3134-3146.	1.2	9
98	General Preparation of (N ₃ N)ZrX (N ₃ N =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 To Hydride Surrogate. Organometallics, 2009, 28, 573-581.	l (N(CH <sı 1.1</sı 	ub>2C 37
99	Synthesis and optical activity analysis of chiral titanium(IV) sec-butoxide and its group IV analogues. Tetrahedron: Asymmetry, 2008, 19, 543-548.	1.8	11
100	Mechanistic variety in zirconium-catalyzed bond-forming reaction of arsines. Dalton Transactions, 2008, , 4488.	1.6	54
101	{ <i>N</i> , <i>N</i> ,Sis[2-(trimethylsilylamino)ethyl]- <i>N</i> ′-(trimethylsilyl)ethane-1,2-diaminato(3–)-κ <su Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m477-m477.</su 	ıp>4 <td>><j>N}me</j></td>	> <j>N}me</j>
102	Insertion of benzyl isocyanide into a Zr–P bond and rearrangement. Atom-economical synthesis of a phosphaalkene. Chemical Communications, 2007, , 4172.	2.2	29
103	Zirconium-Catalyzed Heterodehydrocoupling of Primary Phosphines with Silanes and Germanes. Inorganic Chemistry, 2007, 46, 6855-6857.	1.9	58
104	Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorganic Chemistry, 0, , .	1.9	2