Gavin P Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253633/publications.pdf

Version: 2024-02-01

95 papers 7,839 citations

57758 44 h-index 49909 87 g-index

95 all docs 95 docs citations

95 times ranked 11111 citing authors

#	Article	IF	CITATIONS
1	Targeting Protein Translation in Melanoma by Inhibiting EEF-2 Kinase Regulates Cholesterol Metabolism though SREBP2 to Inhibit Tumour Development. International Journal of Molecular Sciences, 2022, 23, 3481.	4.1	4
2	Targeting WEE1/AKT Restores p53-Dependent Natural Killer–Cell Activation to Induce Immune Checkpoint Blockade Responses in "Cold―Melanoma. Cancer Immunology Research, 2022, 10, 757-769.	3.4	11
3	Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis. Cancer Letters, 2021, 506, 107-119.	7.2	4
4	Development of a Novel Multi-Isoform ALDH Inhibitor Effective as an Antimelanoma Agent. Molecular Cancer Therapeutics, 2020, 19, 447-459.	4.1	15
5	Design, synthesis characterization and biological evaluation of novel multi-isoform ALDH inhibitors as potential anticancer agents. European Journal of Medicinal Chemistry, 2020, 187, 111962.	5.5	23
6	Salubrinal in Combination With 4E1RCat Synergistically Impairs Melanoma Development by Disrupting the Protein Synthetic Machinery. Frontiers in Oncology, 2020, 10, 834.	2.8	14
7	The role of exosomes in metastasis and progression of melanoma. Cancer Treatment Reviews, 2020, 85, 101975.	7.7	66
8	Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming. Cell Reports, 2019, 28, 1971-1980.e8.	6.4	42
9	Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics. Trends in Pharmacological Sciences, 2019, 40, 774-789.	8.7	60
10	Schweinfurthin natural products induce regression of murine melanoma and pair with anti-PD-1 therapy to facilitate durable tumor immunity. Oncolmmunology, 2019, 8, e1539614.	4.6	17
11	Moving Synergistically Acting Drug Combinations to the Clinic by Comparing Sequential versus Simultaneous Drug Administrations. Molecular Pharmacology, 2018, 93, 190-196.	2.3	9
12	Nanoliposomal delivery of cytosolic phospholipase A2 inhibitor arachidonyl trimethyl ketone for melanoma treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 863-873.	3.3	22
13	Identification of WEE1 as a target to make AKT inhibition more effective in melanoma. Cancer Biology and Therapy, 2018, 19, 53-62.	3.4	12
14	Future of circulating tumor cells in the melanoma clinical and research laboratory settings. Cancer Letters, 2017, 392, 60-70.	7.2	26
15	Targeting protein kinase-b3 (akt3) signaling in melanoma. Expert Opinion on Therapeutic Targets, 2017, 21, 273-290.	3.4	16
16	Nanoparticle-Based Celecoxib and Plumbagin for the Synergistic Treatment of Melanoma. Molecular Cancer Therapeutics, 2017, 16, 440-452.	4.1	59
17	Effect of lysosomotropic molecules on cellular homeostasis. Pharmacological Research, 2017, 117, 177-184.	7.1	59
18	Targeting cholesterol transport in circulating melanoma cells toÂinhibit metastasis. Pigment Cell and Melanoma Research, 2017, 30, 541-552.	3.3	14

#	Article	IF	CITATIONS
19	Improving pharmacological targeting of AKT in melanoma. Cancer Letters, 2017, 404, 29-36.	7.2	9
20	Synergistic inhibitory effects of Celecoxib and Plumbagin on melanoma tumor growth. Cancer Letters, 2017, 385, 243-250.	7.2	32
21	Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport. Oncotarget, 2017, 8, 28260-28277.	1.8	21
22	The Role of Cholesterol in Cancer. Cancer Research, 2016, 76, 2063-2070.	0.9	438
23	Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnology Advances, 2016, 34, 565-577.	11.7	39
24	Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood, 2015, 126, 1813-1822.	1.4	75
25	Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pigment Cell and Melanoma Research, 2015, 28, 501-519.	3.3	3
26	A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity. Experimental Parasitology, 2015, 155, 68-73.	1.2	12
27	Disruption of Proline Synthesis in Melanoma Inhibits Protein Production Mediated by the GCN2 Pathway. Molecular Cancer Research, 2015, 13, 1408-1420.	3.4	43
28	Targeting Multiple Key Signaling Pathways in Melanoma Using Leelamine. Molecular Cancer Therapeutics, 2014, 13, 1679-1689.	4.1	44
29	Leelamine Mediates Cancer Cell Death through Inhibition of Intracellular Cholesterol Transport. Molecular Cancer Therapeutics, 2014, 13, 1690-1703.	4.1	63
30	Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell and Melanoma Research, 2014, 27, 801-812.	3.3	20
31	Circulating Melanoma Cells in the Diagnosis and Monitoring of Melanoma: An Appraisal of Clinical Potential. Molecular Diagnosis and Therapy, 2014, 18, 175-183.	3.8	18
32	Nanolipolee-007, a Novel Nanoparticle-Based Drug Containing Leelamine for the Treatment of Melanoma. Molecular Cancer Therapeutics, 2014, 13, 2328-2340.	4.1	23
33	Regulation of UDP-Glucuronosyltransferase 1A1 Expression and Activity by MicroRNA 491-3p. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 465-477.	2.5	65
34	Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis. Molecular Therapy, 2013, 21, 1919-1929.	8.2	165
35	Identification of Aurora Kinase B and Wee1-Like Protein Kinase as Downstream Targets of V600EB-RAF in Melanoma. American Journal of Pathology, 2013, 182, 1151-1162.	3.8	33
36	Identification of glycogen synthase kinase $3\hat{l}\pm$ as a therapeutic target in melanoma. Pigment Cell and Melanoma Research, 2013, 26, 886-899.	3.3	28

#	Article	IF	CITATIONS
37	Current and Future Trials of Targeted Therapies in Cutaneous Melanoma. Advances in Experimental Medicine and Biology, 2013, 779, 223-255.	1.6	27
38	Predicting therapy response in live tumor cells isolated with the flexible micro spring array device. Cell Cycle, 2013, 12, 2132-2143.	2.6	23
39	Simultaneous Targeting of COX-2 and AKT Using Selenocoxib-1-GSH to Inhibit Melanoma. Molecular Cancer Therapeutics, 2013, 12, 3-15.	4.1	46
40	Use of Nanotechnology to Develop Multi-Drug Inhibitors for Cancer Therapy. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	52
41	Abstract 4395: Targeting ribosomal proteins for therapeutic inhibition of melanoma growth, 2013, , .		0
42	Selenium-containing histone deacetylase inhibitors for melanoma management. Cancer Biology and Therapy, 2012, 13, 756-765.	3.4	51
43	Chemoprevention of Melanoma. Advances in Pharmacology, 2012, 65, 361-398.	2.0	17
44	Realizing the Clinical Potential of Cancer Nanotechnology by Minimizing Toxicologic and Targeted Delivery Concerns. Cancer Research, 2012, 72, 5663-5668.	0.9	90
45	Targeting sphingosine kinaseâ€1 to inhibit melanoma. Pigment Cell and Melanoma Research, 2012, 25, 259-274.	3.3	44
46	Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 47-69.	3.3	172
47	Evaluation of a System to Screen for Stimulators of Non-Specific DNA Nicking by HIV-1 Integrase: Application to a Library of 50,000 Compounds. Antiviral Chemistry and Chemotherapy, 2011, 22, 67-74.	0.6	3
48	Melanoma Chemoprevention in Skin Reconstructs and Mouse Xenografts Using Isoselenocyanate-4. Cancer Prevention Research, 2011, 4, 248-258.	1.5	46
49	The Akt signaling pathway. Cancer Biology and Therapy, 2011, 12, 1032-1049.	3.4	77
50	eEF-2 Kinase Dictates Cross-Talk between Autophagy and Apoptosis Induced by Akt Inhibition, Thereby Modulating Cytotoxicity of Novel Akt Inhibitor MK-2206. Cancer Research, 2011, 71, 2654-2663.	0.9	126
51	Therapeutic Implications of Targeting AKT Signaling in Melanoma. Enzyme Research, 2011, 2011, 1-20.	1.8	44
52	Sequential Binding of $\hat{l}\pm v\hat{l}^2$ 3 and ICAM-1 Determines Fibrin-Mediated Melanoma Capture and Stable Adhesion to CD11b/CD18 on Neutrophils. Journal of Immunology, 2011, 186, 242-254.	0.8	48
53	Augmentation of tumor-specific immunity by upregulation of apoptotic melanoma cell calreticulin expression. Cancer Biology and Therapy, 2011, 11, 581-583.	3.4	2
54	Melanoma Prevention Using Topical PBISe. Cancer Prevention Research, 2011, 4, 935-948.	1.5	27

#	Article	IF	CITATIONS
55	Targeting the MAPK pathway in melanoma: Why some approaches succeed and other fail. Biochemical Pharmacology, 2010, 80, 624-637.	4.4	174
56	Synthesis and characterization of a novel iNOS/Akt inhibitor Se,Se′-1,4-phenylenebis(1,2-ethanediyl)bisisoselenourea (PBISe)—against colon cancer. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2038-2043.	2,2	35
57	A nonradioactive plate-based assay for stimulators of nonspecific DNA nicking by HIV-1 integrase and other nucleases. Analytical Biochemistry, 2010, 396, 223-230.	2.4	3
58	Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. FASEB Journal, 2010, 24, 2702-2715.	0.5	47
59	Transiently Entrapped Circulating Tumor Cells Interact with Neutrophils to Facilitate Lung Metastasis Development. Cancer Research, 2010, 70, 6071-6082.	0.9	300
60	KLF6 Gene and Early Melanoma Development in a Collagen I-Rich Extracellular Environment. Journal of the National Cancer Institute, 2010, 102, 1131-1147.	6.3	12
61	In situ photoimmunotherapy: A new hope for cutaneous melanoma patients. Cancer Biology and Therapy, 2010, 10, 1088-1090.	3.4	5
62	Steroid hormones drive cancer development. Cancer Biology and Therapy, 2010, 10, 765-766.	3.4	9
63	Macrophage Inhibitory Cytokine-1 Regulates Melanoma Vascular Development. American Journal of Pathology, 2010, 176, 2948-2957.	3.8	44
64	Abstract 742: Development of novel naphthalimide derivatives as potential melanoma therapeutics. , 2010, , .		0
65	Propagation of Undifferentiated Human Embryonic Stem Cells with Nano-Liposomal Ceramide. Stem Cells and Development, 2009, 18, 55-66.	2.1	25
66	Targeting Akt3 Signaling in Malignant Melanoma Using Isoselenocyanates. Clinical Cancer Research, 2009, 15, 1674-1685.	7.0	92
67	Tumor Suppression by PTEN Requires the Activation of the PKR-eIF2α Phosphorylation Pathway. Science Signaling, 2009, 2, ra85.	3.6	72
68	Noninvasive Drug Delivery Using Ultrasound: Targeting Melanoma Using siRNA Against Mutant (V600E) B-Raf. AIP Conference Proceedings, 2009, , .	0.4	4
69	Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell and Melanoma Research, 2009, 22, 388-399.	3.3	92
70	The PTEN–AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell and Melanoma Research, 2009, 22, 400-419.	3.3	117
71	Identification of tumor suppressive activity by irradiation microcellâ€mediated chromosome transfer and involvement of ⟨i⟩alpha Bâ€crystallin⟨/i⟩ in nasopharyngeal carcinoma. International Journal of Cancer, 2008, 122, 1288-1296.	5.1	22
72	Peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}$ (PPAR $\hat{l}^2\hat{l}$) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology, 2008, 243, 236-243.	4.2	63

#	Article	IF	Citations
73	Combining Nanoliposomal Ceramide with Sorafenib Synergistically Inhibits Melanoma and Breast Cancer Cell Survival to Decrease Tumor Development. Clinical Cancer Research, 2008, 14, 3571-3581.	7.0	120
74	Synthesis and Anticancer Activity Comparison of Phenylalkyl Isoselenocyanates with Corresponding Naturally Occurring and Synthetic Isothiocyanates. Journal of Medicinal Chemistry, 2008, 51, 7820-7826.	6.4	92
75	Calcium Phosphate Nanocomposite Particles for In Vitro Imaging and Encapsulated Chemotherapeutic Drug Delivery to Cancer Cells. Nano Letters, 2008, 8, 4116-4121.	9.1	235
76	Akt3 and Mutant V600EB-Raf Cooperate to Promote Early Melanoma Development. Cancer Research, 2008, 68, 3429-3439.	0.9	174
77	Is B-Raf a Good Therapeutic Target for Melanoma and Other Malignancies?. Cancer Research, 2008, 68, 5-8.	0.9	79
78	PBISe, a novel selenium-containing drug for the treatment of malignant melanoma. Molecular Cancer Therapeutics, 2008, 7, 1297-1308.	4.1	73
79	Targeting V600EB-Raf and Akt3 Using Nanoliposomal-Small Interfering RNA Inhibits Cutaneous Melanocytic Lesion Development. Cancer Research, 2008, 68, 7638-7649.	0.9	150
80	PRAS40 Deregulates Apoptosis in Malignant Melanoma. Cancer Research, 2007, 67, 3626-3636.	0.9	108
81	Mig-7 Linked to Vasculogenic Mimicry. American Journal of Pathology, 2007, 170, 1454-1456.	3.8	15
82	Targeting Mitogen-Activated Protein Kinase/Extracellular Signal–Regulated Kinase Kinase in the Mutant (V600E) B-Raf Signaling Cascade Effectively Inhibits Melanoma Lung Metastases. Cancer Research, 2006, 66, 8200-8209.	0.9	108
83	Rheb Inhibits C-Raf Activity and B-Raf/C-Raf Heterodimerization. Journal of Biological Chemistry, 2006, 281, 25447-25456.	3.4	73
84	Ptenaandptenbgenes play distinct roles in zebrafish embryogenesis. Developmental Dynamics, 2005, 234, 911-921.	1.8	54
85	Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer and Metastasis Reviews, 2005, 24, 273-285.	5.9	162
86	Mutant V599EB-Raf Regulates Growth and Vascular Development of Malignant Melanoma Tumors. Cancer Research, 2005, 65, 2412-2421.	0.9	296
87	Systemic Delivery of Liposomal Short-Chain Ceramide Limits Solid Tumor Growth in Murine Models of Breast Adenocarcinoma. Clinical Cancer Research, 2005, 11, 3465-3474.	7.0	172
88	Deregulated Akt3 Activity Promotes Development of Malignant Melanoma. Cancer Research, 2004, 64, 7002-7010.	0.9	526
89	Regulation of B-Raf Kinase Activity by Tuberin and Rheb Is Mammalian Target of Rapamycin (mTOR)-independent. Journal of Biological Chemistry, 2004, 279, 29930-29937.	3.4	91
90	Method of Mutation Analysis May Contribute to Discrepancies in Reports of V599EBRAF Mutation Frequencies in Melanocytic Neoplasms. Journal of Investigative Dermatology, 2004, 123, 990-992.	0.7	35

#	Article	IF	CITATIONS
91	A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene, 2004, 343, 69-78.	2.2	86
92	Loss of PTEN promotes tumor development in malignant melanoma. Cancer Research, 2003, 63, 2881-90.	0.9	166
93	Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nature Genetics, 2000, 24, 132-138.	21.4	1,292
94	Functional localization of a melanoma tumor suppressor gene to a small (â‰ 2 Mb) region on 11q23. Oncogene, 1999, 18, 3173-3180.	5.9	27
95	In vitroloss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9418-9423.	7.1	90