
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7253085/publications.pdf Version: 2024-02-01

POMPEO VOL PE

#	Article	IF	CITATIONS
1	Reciprocal Homer1a and Homer2 Isoform Expression Is a Key Mechanism for Muscle Soleus Atrophy in Spaceflown Mice. International Journal of Molecular Sciences, 2022, 23, 75.	1.8	3
2	Preliminary Observations on Skeletal Muscle Adaptation and Plasticity in Homer 2-/- Mice. Metabolites, 2021, 11, 642.	1.3	2
3	Molecular adaptation to calsequestrin 2 (CASQ2) point mutations leading to catecholaminergic polymorphic ventricular tachycardia (CPVT): comparative analysis of R33Q and D307H mutants. Journal of Muscle Research and Cell Motility, 2020, 41, 251-258.	0.9	6
4	Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Frontiers in Neuroanatomy, 2020, 14, 15.	0.9	3
5	Tetrodotoxinâ€5ensitive Neuronalâ€Type Na ⁺ Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation. Journal of the American Heart Association, 2020, 9, e015119.	1.6	5
6	Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease. Scientific Reports, 2019, 9, 10179.	1.6	33
7	Cardiac Store Operated Calcium Entry (SOCE) is Compartmentalized at Intercalated Disks and Linked to Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Biophysical Journal, 2019, 116, 236a.	0.2	0
8	Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People. Gerontology and Geriatric Medicine, 2018, 4, 233372141876899.	0.8	14
9	Microgravity-Induced Transcriptome Adaptation in Mouse Paraspinal longissimus dorsi Muscle Highlights Insulin Resistance-Linked Genes. Frontiers in Physiology, 2017, 8, 279.	1.3	37
10	Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice. PLoS ONE, 2017, 12, e0169314.	1.1	59
11	Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic Stimulation. JACC Basic To Translational Science, 2016, 1, 251-266.	1.9	31
12	Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only. Journal of Muscle Research and Cell Motility, 2016, 37, 225-233.	0.9	5
13	Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. Journal of Muscle Research and Cell Motility, 2016, 37, 27-39.	0.9	8
14	Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release. Cardiovascular Research, 2015, 106, 143-152.	1.8	38
15	Post-natal heart adaptation in a knock-in mouse model of calsequestrin 2-linked recessive catecholaminergic polymorphic ventricular tachycardia. Experimental Cell Research, 2014, 321, 178-189.	1.2	12
16	Altered Ca ²⁺ concentration, permeability and buffering in the myofibre Ca ²⁺ store of a mouse model of malignant hyperthermia. Journal of Physiology, 2013, 591, 4439-4457.	1.3	27
17	Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse. Redox Biology, 2013, 1, 514-526.	3.9	25
18	Homer protein family regulation in skeletal muscle and neuromuscular adaptation. IUBMB Life, 2013, 65, 769-776.	1.5	23

#	Article	IF	CITATIONS
19	Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy. Experimental Cell Research, 2013, 319, 1804-1814.	1.2	8
20	Homer 2 antagonizes protein degradation in slow-twitch skeletal muscles. American Journal of Physiology - Cell Physiology, 2013, 304, C68-C77.	2.1	9
21	Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. Journal of General Physiology, 2013, 142, 127-136.	0.9	46
22	Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca ²⁺ release in a genetic model of arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10312-10317.	3.3	53
23	Viral Gene Transfer Rescues Arrhythmogenic Phenotype and Ultrastructural Abnormalities in Adult Calsequestrin-Null Mice With Inherited Arrhythmias. Circulation Research, 2012, 110, 663-668.	2.0	71
24	Increased Levels of miR-1 Exacerbate Cardiac Arrhythmia Linked to Gain-Of- Function Mutations of RyR2 Complex. Biophysical Journal, 2012, 102, 101a-102a.	0.2	0
25	Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise. FASEB Journal, 2011, 25, 4312-4325.	0.2	49
26	Ryanodine Receptor Luminal Ca2+ Regulation: Swapping Calsequestrin and Channel Isoforms. Biophysical Journal, 2009, 97, 1961-1970.	0.2	47
27	Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death. Biophysical Journal, 2008, 95, 2037-2048.	0.2	91
28	Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and its Mutants. Journal of General Physiology, 2008, 131, 325-334.	0.9	122
29	Unexpected Structural and Functional Consequences of the R33Q Homozygous Mutation in Cardiac Calsequestrin. Circulation Research, 2008, 103, 298-306.	2.0	124
30	Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin. Biochemical Journal, 2008, 413, 291-303.	1.7	42
31	Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrinâ€1. Journal of Physiology, 2007, 583, 767-784.	1.3	130
32	Nuclear targeting of the CaMKII anchoring protein αKAP is regulated by alternative splicing and protein kinases. Brain Research, 2006, 1086, 17-26.	1.1	7
33	Transition of Homer isoforms during skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2006, 290, C711-C718.	2.1	17
34	Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death. Circulation Research, 2006, 98, 1151-1158.	2.0	179
35	Clinical Phenotype and Functional Characterization of CASQ2 Mutations Associated With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2006, 114, 1012-1019.	1.6	189
36	Myocyte Enhancer Factor 2 Activates Promoter Sequences of the Human AβH-J-J Locus, Encoding Aspartyl-β-Hydroxylase, Junctin, and Junctate. Molecular and Cellular Biology, 2005, 25, 3261-3275.	1.1	12

#	Article	IF	CITATIONS
37	Multiple pathways for calcium handling abnormalities linking a novel CASQ2 mutation to ventricular arrhytmias and sudden death. Heart Rhythm, 2005, 2, S137-S138.	0.3	Ο
38	Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin. Circulation Research, 2004, 94, 471-477.	2.0	158
39	Topology of Homer 1c and Homer 1a in C2C12 myotubes and transgenic skeletal muscle fibers. Biochemical and Biophysical Research Communications, 2004, 316, 884-892.	1.0	13
40	Subcellular distribution of Homer 1b/c in relation to endoplasmic reticulum and plasma membrane proteins in Purkinje neurons. Neurochemical Research, 2003, 28, 1151-1158.	1.6	20
41	Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium, 2003, 34, 177-184.	1.1	79
42	Vesl/Homer proteins regulate ryanodine receptor type 2 function and intracellular calcium signaling. Cell Calcium, 2003, 34, 261-269.	1.1	66
43	Electrotransfer in differentiated myotubes: a novel, efficient procedure for functional gene transfer. Experimental Cell Research, 2003, 286, 87-95.	1.2	14
44	Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11759-11764.	3.3	224
45	Targeting of alpha-kinase-anchoring protein (alphaKAP) to sarcoplasmic reticulum and nuclei of skeletal muscle. Biochemical Journal, 2003, 370, 873-880.	1.7	27
46	Targeting of Calsequestrin to the Sarcoplasmic Reticulum of Skeletal Muscle upon Deletion of Its Glycosylation Site. Experimental Cell Research, 2001, 265, 104-113.	1.2	12
47	Evidence for the Presence of Two Homer 1 Transcripts in Skeletal and Cardiac Muscles. Biochemical and Biophysical Research Communications, 2000, 279, 348-353.	1.0	39
48	Site-Directed Mutagenesis and Deletion of Three Phosphorylation Sites of Calsequestrin of Skeletal Muscle Sarcoplasmic Reticulum. Experimental Cell Research, 2000, 260, 40-49.	1.2	15
49	Kinetic basis of quantal calcium release from intracellular calcium stores. Cell Calcium, 1998, 23, 43-52.	1.1	6
50	LU52396, an inhibitor of the store-dependent (capacitative) Ca2+ influx. European Journal of Pharmacology, 1995, 289, 23-31.	2.7	18
51	Inositol 1,4,5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Neurobiology of Aging, 1994, 15, 203-206.	1.5	33
52	Postnatal development of rabbit fast-twitch skeletal muscle: accumulation, isoform transition and fibre distribution of calsequestrin. Journal of Muscle Research and Cell Motility, 1993, 14, 646-653.	0.9	37
53	Ontogenesis of Chick Iris Intrinsic Muscles: Evidence for a Smooth-to-Striated Muscle Transition. Developmental Biology, 1993, 159, 441-449.	0.9	22
54	The Endoplasmic Reticulum-Sarcoplasmic Reticulum Connection. Experimental Cell Research, 1993, 209, 140-148.	1.2	40

#	Article	IF	CITATIONS
55	Ryanodine receptors: how many, where and why?. Trends in Pharmacological Sciences, 1993, 14, 98-103.	4.0	302
56	Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers. FEBS Letters, 1992, 299, 175-178.	1.3	35
57	Purification and characterization of calsequestrin from chicken cerebellum. Biochemical and Biophysical Research Communications, 1991, 181, 28-35.	1.0	7
58	Quantitation of ryanodine receptor of rabbit skeletal muscle, heart and brain. Biochemical and Biophysical Research Communications, 1991, 175, 858-865.	1.0	33
59	Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. Journal of Muscle Research and Cell Motility, 1990, 11, 522-530.	0.9	51
60	Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron, 1990, 5, 713-721.	3.8	60
61	The unraveling architecture of the junctional sarcoplasmic reticulum. Journal of Bioenergetics and Biomembranes, 1989, 21, 215-225.	1.0	5
62	Sequence homology of a canine brain calcium-binding protein with calregulin and the human RoSS-A antigen. Biochemical and Biophysical Research Communications, 1989, 164, 575-579.	1.0	23
63	Distribution of endoplasmic reticulum and calciosome markers in membrane fractions isolated from different regions of the canine brain. Archives of Biochemistry and Biophysics, 1989, 272, 162-174.	1.4	40
64	Denervation-induced proliferative changes of triads in rabbit skeletal muscle. Muscle and Nerve, 1988, 11, 1246-1259.	1.0	43
65	Calcium binding proteins of junctional sarcoplasmic reticulum: Detection by 45Ca ligand overlay. Archives of Biochemistry and Biophysics, 1988, 261, 324-329.	1.4	27
66	The intracellular distribution of calcium. Trends in Neurosciences, 1988, 11, 449-452.	4.2	80
67	Measurement of calcium release from sarcoplasmic reticulum of skeletal muscle: Effect of calcium and inositol 1,4,5-trisphosphate. Methods in Enzymology, 1987, 141, 3-18.	0.4	2
68	Crystallization of the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum Inhibition by myotoxina. FEBS Letters, 1987, 224, 89-96.	1.3	8
69	Photolabeling of the integral proteins of skeletal muscle sarcoplasmic reticulum: Comparison of junctional and nonjunctional membrane fractions. Archives of Biochemistry and Biophysics, 1987, 253, 138-145.	1.4	16
70	Inositol trisphosphate and muscle: caution is a must. Trends in Biochemical Sciences, 1987, 12, 139-140.	3.7	4
71	Interaction of myotoxin a with the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum. Archives of Biochemistry and Biophysics, 1986, 246, 90-97.	1.4	37
72	Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle. FEBS Letters, 1986, 197, 1-4.	1.3	51

#	Article	IF	CITATIONS
73	Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature, 1985, 316, 347-349.	13.7	273
74	Ca2+ channel agonist BAY-k 8644 does not elicit Ca2+ release from skeletal muscle sarcoplasmic reticulum. FEBS Letters, 1985, 186, 255-258.	1.3	14
75	The effect of phenothiazines on Ca2+ fluxes in skeletal muscle sarcoplasmic reticulum. Archives of Biochemistry and Biophysics, 1984, 233, 174-179.	1.4	10