
Valérie Le Corre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/725273/publications.pdf Version: 2024-02-01

VALÃODIE LE CODDE

#	Article	IF	CITATIONS
1	Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 2013, 29, 649-658.	6.7	462
2	Phylogeographic Structure of White Oaks Throughout the European Continent. Genetics, 1997, 146, 1475-1487.	2.9	437
3	The Scale of Population Structure in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1000843.	3.5	338
4	The genetic differentiation at quantitative trait loci under local adaptation. Molecular Ecology, 2012, 21, 1548-1566.	3.9	278
5	Highâ€ŧhroughput microsatellite isolation through 454 GSâ€FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources, 2011, 11, 638-644.	4.8	276
6	DNA Polymorphism at the FRIGIDA Gene in Arabidopsis thaliana: Extensive Nonsynonymous Variation Is Consistent with Local Selection for Flowering Time. Molecular Biology and Evolution, 2002, 19, 1261-1271.	8.9	217
7	Genetic Variability at Neutral Markers, Quantitative Trait Loci and Trait in a Subdivided Population Under Selection. Genetics, 2003, 164, 1205-1219.	2.9	211
8	Nested core collections maximizing genetic diversity inArabidopsis thaliana. Plant Journal, 2004, 38, 193-202.	5.7	175
9	Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genetical Research, 1997, 69, 117-125.	0.9	160
10	How to be early flowering: an evolutionary perspective. Trends in Plant Science, 2006, 11, 375-381.	8.8	143
11	Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology, 2002, 11, 1145-1156.	3.9	129
12	Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Molecular Ecology, 2006, 15, 1507-1517.	3.9	122
13	Geographical variation in resistance to acetylâ€coenzyme A carboxylaseâ€inhibiting herbicides across the range of the arable weed <i>Alopecurus myosuroides</i> (blackâ€grass). New Phytologist, 2010, 186, 1005-1017.	7.3	103
14	Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nature Ecology and Evolution, 2017, 1, 1551-1561.	7.8	89
15	Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of history and geography. Molecular Ecology, 1997, 6, 519-529.	3.9	85
16	Weed response to herbicides: regionalâ€scale distribution of herbicide resistance alleles in the grass weed Alopecurus myosuroides. New Phytologist, 2006, 171, 861-874.	7.3	72
17	A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Annals of Botany, 2013, 111, 681-691.	2.9	72
18	Genetic variation and population structure in blackâ€grass (<i>Alopecurus myosuroides</i> Huds.), a successful, herbicideâ€resistant, annual grass weed of winter cereal fields. Molecular Ecology, 2007, 16, 3161-3172.	3.9	67

Valérie Le Corre

#	Article	IF	CITATIONS
19	Adaptive divergence for a fitnessâ€related trait among invasive <i>Ambrosia artemisiifolia</i> populations in France. Molecular Ecology, 2011, 20, 1378-1388.	3.9	64
20	Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25618-25627.	7.1	54
21	Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. III. Patterns of variation identified by geostatistical analyses. Heredity, 1998, 80, 464-473.	2.6	39
22	Nucleotide Variability at the Acetyl Coenzyme A Carboxylase Gene and the Signature of Herbicide Selection in the Grass Weed Alopecurus myosuroides (Huds.). Molecular Biology and Evolution, 2004, 21, 884-892.	8.9	39
23	High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic and Applied Ecology, 2010, 11, 504-512.	2.7	37
24	Variation in the gene encoding acetolactateâ€synthase in <i>Lolium</i> species and proactive detection of mutant, herbicideâ€resistant alleles. Weed Research, 2009, 49, 326-336.	1.7	36
25	Fitness cost due to herbicide resistance may trigger genetic background evolution. Evolution; International Journal of Organic Evolution, 2015, 69, 271-278.	2.3	35
26	Historical and contemporary dynamics of adaptive differentiation in European oaks. , 2010, , 101-122.		29
27	Stochastic processes and crop types shape weed community assembly in arable fields. Journal of Vegetation Science, 2015, 26, 348-359.	2.2	28
28	Relationship between weed dormancy and herbicide rotations: implications in resistance evolution. Pest Management Science, 2017, 73, 1994-1999.	3.4	25
29	The interspecific and intraspecific variation of functional traits in weeds: diversified ecological strategies within arable fields. Acta Botanica Gallica, 2014, 161, 243-252.	0.9	23
30	Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds. Environmental Science and Pollution Research, 2017, 24, 11582-11600.	5.3	23
31	New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS ONE, 2017, 12, e0176197.	2.5	23
32	Assessment of the type and degree of restriction fragment length polymorphism (RFLP) in diploid species of the genus Triticum. Theoretical and Applied Genetics, 1995, 90, 1063-1067.	3.6	22
33	Development of Microsatellite Markers in the Branched Broomrape Phelipanche ramosa L. (Pomel) and Evidence for Host-Associated Genetic Divergence. International Journal of Molecular Sciences, 2014, 15, 994-1002.	4.1	18
34	Choosing the best cropping systems to target pleiotropic effects when managing singleâ€gene herbicide resistance in grass weeds. A blackgrass simulation study. Pest Management Science, 2016, 72, 1910-1925.	3.4	18
35	Phelipanche ramosa (L.) Pomel populations differ in life-history and infection response to hosts. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 247-252.	1.2	16
36	Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II.ÂWeed impacts on crop production and biodiversity. Environmental Science and Pollution Research, 2017, 24, 13121-13135.	5.3	15

VALéRIE LE CORRE

#	Article	IF	CITATIONS
37	Harnessing the power of nextâ€generation sequencing technologies to the purpose of highâ€throughput pesticide resistance diagnosis. Pest Management Science, 2020, 76, 543-552.	3.4	14
38	Genetic diversity of the declining arable plant <i><scp>C</scp>entaurea cyanus</i> : population fragmentation within an agricultural landscape is not associated with enhanced spatial genetic structure. Weed Research, 2014, 54, 436-444.	1.7	13
39	Isolation and Characterisation of 11 Polymorphic Microsatellite Markers in Papaver rhoeas L. (Corn) Tj ETQq1 1 Sciences, 2013, 14, 470-479.	0.784314 4.1	rgBT /Overloc 11
40	A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Scientific Reports, 2021, 11, 19904.	3.3	11
41	Assessment of phylogenetic signal in the germination ability of <i>Phelipanche ramosa</i> on <i>Brassicaceae</i> hosts. Weed Research, 2016, 56, 452-461.	1.7	10
42	Intraspecific seasonal variation of dormancy and mortality of <i>Phelipanche ramosa</i> seeds. Weed Research, 2019, 59, 407-418.	1.7	10
43	Is induction ability of seed germination of Phelipanche ramosa phylogenetically structured among hosts? A case study on Fabaceae species. Genetica, 2017, 145, 481-489.	1.1	8
44	Unexpected fast development of branched broomrape on slow-growing Brassicaceae. Agronomy for Sustainable Development, 2015, 35, 151-156.	5.3	6
45	Metapop: An individualâ€based model for simulating the evolution of tree populations in spatially and temporally heterogeneous landscapes. Molecular Ecology Resources, 2019, 19, 296-305.	4.8	4
46	Population differentiation for adaptive traits and their underlying loci in forest trees: theoretical predictions and experimental results. Forestry Sciences, 2000, , 59-74.	0.4	4
47	Lab meets field: Accelerated selection and field monitoring concur that non-target-site-based resistance evolves first in the dicotyledonous, allergenic weed Ambrosia artemisiifolia. Plant Science, 2022, 317, 111202.	3.6	2
48	Development of microsatellite markers in <i>Capsella rubella</i> and <i>Capsella bursaâ€pastoris</i> (Brassicaceae). American Journal of Botany, 2011, 98, e176-9.	1.7	1