
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251532/publications.pdf Version: 2024-02-01

ANNA CAROBENE

#	Article	IF	CITATIONS
1	The Biological Variation Data Critical Appraisal Checklist: A Standard for Evaluating Studies on Biological Variation. Clinical Chemistry, 2018, 64, 501-514.	3.2	152
2	A checklist for critical appraisal of studies of biological variation. Clinical Chemistry and Laboratory Medicine, 2015, 53, 879-85.	2.3	120
3	Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. Clinical Chemistry and Laboratory Medicine, 2021, 59, 421-431.	2.3	109
4	Sample collections from healthy volunteers for biological variation estimates' update: a new project undertaken by the Working Group on Biological Variation established by the European Federation of Clinical Chemistry and Laboratory Medicine. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1599-1608.	2.3	76
5	The EuBIVAS: Within- and Between-Subject Biological Variation Data for Electrolytes, Lipids, Urea, Uric Acid, Total Protein, Total Bilirubin, Direct Bilirubin, and Glucose. Clinical Chemistry, 2018, 64, 1380-1393.	3.2	75
6	A systematic review of data on biological variation for alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase. Clinical Chemistry and Laboratory Medicine, 2013, 51, 1997-2007.	2.3	74
7	The importance of being external. methodological insights for the external validation of machine learning models in medicine. Computer Methods and Programs in Biomedicine, 2021, 208, 106288.	4.7	72
8	The EuBIVAS Project: Within- and Between-Subject Biological Variation Data for Serum Creatinine Using Enzymatic and Alkaline Picrate Methods and Implications for Monitoring. Clinical Chemistry, 2017, 63, 1527-1536.	3.2	66
9	Reliability of biological variation data available in an online database: need for improvement. Clinical Chemistry and Laboratory Medicine, 2015, 53, 871-7.	2.3	65
10	Biological Variation Estimates Obtained from 91 Healthy Study Participants for 9 Enzymes in Serum. Clinical Chemistry, 2017, 63, 1141-1150.	3.2	51
11	Within-subject and between-subject biological variation estimates of 21 hematological parameters in 30 healthy subjects. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1309-1318.	2.3	51
12	Biological variation of platelet parameters determined by the Sysmex XN hematology analyzer. Clinica Chimica Acta, 2017, 470, 125-132.	1.1	41
13	Systematic review and meta-analysis of within-subject and between-subject biological variation estimates of 20 haematological parameters. Clinical Chemistry and Laboratory Medicine, 2019, 58, 25-32.	2.3	40
14	The European Biological Variation Study (EuBIVAS): a summary report. Clinical Chemistry and Laboratory Medicine, 2022, 60, 505-517.	2.3	40
15	European Biological Variation Study (EuBIVAS): Within- and Between-Subject Biological Variation Data for 15 Frequently Measured Proteins. Clinical Chemistry, 2019, 65, 1031-1041.	3.2	39
16	Evaluation of the impact of standardization process on the quality of serum creatinine determination in Italian laboratories. Clinica Chimica Acta, 2014, 427, 100-106.	1.1	37
17	Biological variation estimates for prostate specific antigen from the European Biological Variation Study; consequences for diagnosis and monitoring of prostate cancer. Clinica Chimica Acta, 2018, 486, 185-191.	1.1	37
18	Creatinine measurement proficiency testing: assignment of matrix-adjusted ID GC-MS target values. Clinical Chemistry, 1997, 43, 1342-1347.	3.2	36

#	Article	IF	CITATIONS
19	Harmonization initiatives in the generation, reporting and application of biological variation data. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1629-1636.	2.3	33
20	Systematic review of the biological variation data for diabetes related analytes. Clinica Chimica Acta, 2019, 488, 61-67.	1.1	32
21	Age and origin of the FCMD 3′-untranslated-region retrotransposal insertion mutation causing Fukuyama-type congenital muscular dystrophy in the Japanese population. Human Genetics, 2000, 107, 559-567.	3.8	30
22	Short- and medium-term biological variation estimates of leukocytes extended to differential count and morphology-structural parameters (cell population data) in blood samples obtained from healthy people. Clinica Chimica Acta, 2017, 473, 147-156.	1.1	30
23	Biological variation data for lipid cardiovascular risk assessment biomarkers. A systematic review applying the biological variation data critical appraisal checklist (BIVAC). Clinica Chimica Acta, 2019, 495, 467-475.	1.1	27
24	Creatinine determination in serum by capillary electrophoresis. Electrophoresis, 2004, 25, 463-468.	2.4	25
25	A pragmatic proposal for permissible limits in external quality assessment schemes with a compromise between biological variation and the state of the art. Clinical Chemistry and Laboratory Medicine, 2012, 50, 833-9.	2.3	25
26	The European Biological Variation Study (EuBIVAS): weekly biological variation of cardiac troponin I estimated by the use of two different high-sensitivity cardiac troponin I assays. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1741-1747.	2.3	25
27	Analytical evaluation of the performances of Diazyme and BRAHMS procalcitonin applied to Roche Cobas in comparison with BRAHMS PCT-sensitive Kryptor. Clinical Chemistry and Laboratory Medicine, 2017, 56, 162-169.	2.3	23
28	Biological Variation of Cardiac Troponins in Health and Disease: A Systematic Review and Meta-analysis. Clinical Chemistry, 2021, 67, 256-264.	3.2	21
29	European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates for serum thyroid biomarkers based on weekly samplings from 91 healthy participants. Clinical Chemistry and Laboratory Medicine, 2022, 60, 523-532.	2.3	21
30	Performance of glycated hemoglobin (HbA1c) methods evaluated with EQAS studies using fresh blood samples: Still space for improvements. Clinica Chimica Acta, 2015, 451, 305-309.	1.1	19
31	Providing Correct Estimates of Biological Variation—Not an Easy Task. The Example of S100-β Protein and Neuron-Specific Enolase. Clinical Chemistry, 2018, 64, 1537-1539.	3.2	19
32	Within- and between-subject biological variation data for tumor markers based on the European Biological Variation Study. Clinical Chemistry and Laboratory Medicine, 2022, 60, 543-552.	2.3	19
33	How is test laboratory data used and characterised by machine learning models? A systematic review of diagnostic and prognostic models developed for COVID-19 patients using only laboratory data. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1887-1901.	2.3	19
34	Analytical Performance Specifications for Lipoprotein(a), Apolipoprotein B-100, and Apolipoprotein A-I Using the Biological Variation Model in the EuBIVAS Population. Clinical Chemistry, 2020, 66, 727-736.	3.2	17
35	Age dependence of within-subject biological variation of nine common clinical chemistry analytes. Clinical Chemistry and Laboratory Medicine, 2012, 50, 841-4.	2.3	16
36	External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count. Health Information Science and Systems, 2021, 9, 37.	5.2	16

#	Article	IF	CITATIONS
37	Short- and medium-term biological variation estimates of red blood cell and reticulocyte parameters in healthy subjects. Clinical Chemistry and Laboratory Medicine, 2018, 56, 954-963.	2.3	15
38	Critical appraisal and meta-analysis of biological variation estimates for kidney related analytes. Clinical Chemistry and Laboratory Medicine, 2022, 60, 469-478.	2.3	15
39	Biological variation estimates of thyroid related measurands– meta-analysis of BIVAC compliant studies. Clinical Chemistry and Laboratory Medicine, 2022, 60, 483-493.	2.3	15
40	Age of the intronic GAA triplet repeat expansion mutation in Friedreich ataxia. Human Genetics, 2000, 106, 455-458.	3.8	14
41	Comparison of the results from two different External Quality Assessment Schemes supports the utility of robust quality specifications. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1143-1149.	2.3	14
42	The European Biological Variation Study (EuBIVAS): Biological Variation Data for Coagulation Markers Estimated by a Bayesian Model. Clinical Chemistry, 2021, 67, 1259-1270.	3.2	14
43	Analytical Performance Specifications for 25-Hydroxyvitamin D Examinations. Nutrients, 2021, 13, 431.	4.1	13
44	Critical review and meta-analysis of biological variation estimates for tumor markers. Clinical Chemistry and Laboratory Medicine, 2022, 60, 494-504.	2.3	13
45	Biological variation of morning serum cortisol: Updated estimates from the European biological variation study (EuBIVAS) and meta-analysis. Clinica Chimica Acta, 2020, 509, 268-272.	1.1	12
46	Prediction of ICU admission for COVID-19 patients: a Machine Learning approach based on Complete Blood Count data. , 2021, , .		12
47	A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients. Medical and Biological Engineering and Computing, 2022, , 1.	2.8	11
48	European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates for serum biointact parathyroid hormone based on weekly samplings from 91 healthy participants. Annals of Translational Medicine, 2020, 8, 855-855.	1.7	10
49	Within-person biological variation estimates from the European Biological Variation Study (EuBIVAS) for serum potassium and creatinine used to obtain personalized reference intervals. Clinica Chimica Acta, 2021, 523, 205-207.	1.1	10
50	The European Biological Variation Study (EuBIVAS): delivery of updated biological variation estimates, a project by the Working Group on Biological Variation in the European Federation of Clinical Chemistry and Laboratory Medicine. Journal of Laboratory and Precision Medicine, 2017, 2, 70-70.	1.1	9
51	The multicenter European Biological Variation Study (EuBIVAS): a new glance provided by the Principal Component Analysis (PCA), a machine learning unsupervised algorithms, based on the basic metabolic panel linked measurands. Clinical Chemistry and Laboratory Medicine, 2022, 60, 556-568.	2.3	9
52	Problems with estimating reference change values (critical differences). Clinica Chimica Acta, 2021, 523, 437-440.	1.1	9
53	Within- and between-subject biological variation data for serum zinc, copper and selenium obtained from 68 apparently healthy Turkish subjects. Clinical Chemistry and Laboratory Medicine, 2022, 60, 533-542.	2.3	8
54	Personalized reference intervals: From the statistical significance to the clinical usefulness. Clinica Chimica Acta, 2022, 524, 203-204.	1.1	8

#	Article	IF	CITATIONS
55	Biological variation– eight years after the 1st Strategic Conference of EFLM. Clinical Chemistry and Laboratory Medicine, 2022, 60, 465-468.	2.3	8
56	Standardization and harmonization in hematology: Instrument alignment, quality control materials, and commutability issue. International Journal of Laboratory Hematology, 2021, 43, 364-371.	1.3	7
57	Distribution and determinants of serum high-sensitivity C-reactive protein in Ethiopian population. Clinica Chimica Acta, 2021, 517, 99-107.	1.1	7
58	Systematic review and meta-analysis of within-subject and between-subject biological variation estimates of serum zinc, copper and selenium. Clinical Chemistry and Laboratory Medicine, 2022, 60, 479-482.	2.3	7
59	Prevalence of metabolic syndrome among patients with schizophrenia in Ethiopia. BMC Psychiatry, 2021, 21, 620.	2.6	7
60	Critical appraisal and meta-analysis of biological variation studies on glycosylated albumin, glucose and HbA _{1c} . Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1,	0.2	6
61	Biological variation of serum insulin: updated estimates from the European Biological Variation Study (EuBIVAS) and meta-analysis. Clinical Chemistry and Laboratory Medicine, 2022, 60, 518-522.	2.3	6
62	Role of time-normalized laboratory findings in predicting COVID-19 outcome. Diagnosis, 2020, 7, 387-394.	1.9	5
63	Long-term within- and between-subject biological variation of 29 routine laboratory measurands in athletes. Clinical Chemistry and Laboratory Medicine, 2022, 60, 618-628.	2.3	5
64	A mechanism-based way to evaluate commutability of control materials for enzymatic measurements. The example of gamma-glutamyltransferase. Clinica Chimica Acta, 2013, 424, 153-158.	1.1	4
65	Evaluation of the performance of an immunoturbidimetric HbA1c reagent applied to the Siemens ADVIA 2400 automatic analyzer. Clinical Biochemistry, 2015, 48, 177-180.	1.9	4
66	Multicentre Evaluation of KONE Optima Analysis System. Clinical Chemistry and Laboratory Medicine, 1998, 36, 475-84.	2.3	2
67	Evaluación crÃŧica y meta-análisis de estudios de variación biológica para albúmina glicosilada, glucosa y HbA _{1c} . Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1, .	0.2	1
68	A very uncommon haemoglobin value resulting from a severe acute malnutrition in a 16-month-old child in Ethiopia. Clinical Chemistry and Laboratory Medicine, 2021, 59, e103-e105.	2.3	1
69	Routine blood tests as an active surveillance to monitor COVID-19 prevalence. A retrospective study. Acta Biomedica, 2020, 91, e2020009.	0.3	Ο
70	Evidence of significant difference in key COVID-19 biomarkers during the Italian lockdown strategy. A retrospective study on patients admitted to a hospital emergency department in Northern Italy. Acta Biomedica, 2020, 91, e2020156.	0.3	0