Maria Diaz-Meco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7251140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S-Nitrosylation of p62 Inhibits Autophagic Flux to Promote α-Synuclein Secretion and Spread in Parkinson's Disease and Lewy Body Dementia. Journal of Neuroscience, 2022, 42, 3011-3024.	1.7	22
2	Immunosurveillance, interferon, and autophagic networking in cancer: the PRKCI-ULK2 paradigm. Autophagy, 2022, 18, 226-227.	4.3	2
3	Protein kinase \hat{Cl} »/ \hat{l}^1 in cancer: a contextual balance of time and signals. Trends in Cell Biology, 2022, 32, 1023-1034.	3.6	5
4	The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Reports, 2022, 39, 110792.	2.9	22
5	Stromal SOX2 Upregulation Promotes Tumorigenesis through the Generation of a SFRP1/2-Expressing Cancer-Associated Fibroblast Population. Developmental Cell, 2021, 56, 95-110.e10.	3.1	50
6	Mouse model of colorectal cancer: Orthotopic co-implantation of tumor and stroma cells in cecum and rectum. STAR Protocols, 2021, 2, 100297.	0.5	15
7	NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPARÎ ³ . Nature Communications, 2021, 12, 2876.	5.8	13
8	Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell, 2021, 39, 678-693.e11.	7.7	91
9	PKCλ/Î ¹ inhibition activates an ULK2-mediated interferon response to repress tumorigenesis. Molecular Cell, 2021, 81, 4509-4526.e10.	4.5	12
10	The complexity of the serine glycine one-carbon pathway in cancer. Journal of Cell Biology, 2020, 219, .	2.3	71
11	The interplay between PRKCI/PKCλ/ι, SQSTM1/p62, and autophagy orchestrates the oxidative metabolic response that drives liver cancer. Autophagy, 2020, 16, 1915-1917.	4.3	5
12	Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism, 2020, 2, 1034-1045.	5.1	174
13	An Orthotopic Implantation Mouse Model of Hepatocellular Carcinoma with Underlying Liver Steatosis. STAR Protocols, 2020, 1, 100185.	0.5	7
14	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	5.8	21
15	Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood, 2020, 136, 1824-1836.	0.6	26
16	PKCλ/ι Loss Induces Autophagy, Oxidative Phosphorylation, and NRF2 to Promote Liver Cancer Progression. Cancer Cell, 2020, 38, 247-262.e11.	7.7	73
17	NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. Journal of Hepatology, 2020, 72, 1182-1195.	1.8	71
18	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	3.2	200

#	Article	IF	CITATIONS
19	Serrated Colorectal Cancer: The Road Less Travelled?. Trends in Cancer, 2019, 5, 742-754.	3.8	32
20	The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell, 2019, 36, 218-235.	7.7	58
21	Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell, 2019, 35, 385-400.e9.	7.7	128
22	The signaling axis atypical protein kinase C λ/ι-Satb2 mediates leukemic transformation of B-cell progenitors. Nature Communications, 2019, 10, 46.	5.8	23
23	Mechanistic insight into the regulation of SQSTM1/p62. Autophagy, 2019, 15, 735-737.	4.3	18
24	Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor. Cancer Cell, 2018, 33, 770-784.e6.	7.7	81
25	The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Reports, 2018, 23, 1178-1191.	2.9	53
26	Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 88-95.	3.3	31
27	Simultaneous Loss of Both Atypical Protein Kinase C Genes in the Intestinal Epithelium Drives Serrated Intestinal Cancer by Impairing Immunosurveillance. Immunity, 2018, 49, 1132-1147.e7.	6.6	35
28	ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nature Communications, 2018, 9, 4373.	5.8	76
29	The macroenviromental control of cancer metabolism by p62. Cell Cycle, 2018, 17, 2110-2121.	1.3	11
30	Basal Polarity Complex Scribble Is Required for Leukemic Initiation and Propagation through Negative Regulation of Apical Polarity Complex Activator Cdc42 and Hypoxia Inducing Factor-11±. Blood, 2018, 132, 551-551.	0.6	0
31	p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Research, 2017, 77, 3255-3267.	0.4	49
32	Metabolism shapes the tumor microenvironment. Current Opinion in Cell Biology, 2017, 48, 47-53.	2.6	210
33	Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Molecular Cell, 2017, 66, 141-153.e6.	4.5	215
34	ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma. Cell Metabolism, 2017, 26, 817-829.e6.	7.2	81
35	Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell, 2017, 32, 824-839.e8.	7.7	97
36	Scribble Controls HSC Self-Renewal through Polarity-Dependent Activation of the Hippo Signaling Pathway. Blood, 2017, 130, 710-710.	0.6	1

#	Article	IF	CITATIONS
37	TRIM21ÂUbiquitylates SQSTM1/p62 and Suppresses Protein Sequestration to Regulate Redox Homeostasis. Molecular Cell, 2016, 61, 720-733.	4.5	162
38	p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell, 2016, 30, 595-609.	7.7	183
39	Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKCl̂»/l̂1. Cell Reports, 2016, 16, 3297-3310.	2.9	49
40	p62 in Cancer: Signaling Adaptor Beyond Autophagy. Cell, 2016, 167, 606-609.	13.5	310
41	Nuclear fallout provides a new link between aPKC and polarized cell trafficking. BMC Biology, 2016, 14, 32.	1.7	5
42	p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 2016, 29, 935-948.	7.7	353
43	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
44	NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 2016, 164, 896-910.	13.5	859
45	Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ. Cell Reports, 2015, 10, 740-754.	2.9	70
46	Nutrient stress revamps cancer cell metabolism. Cell Research, 2015, 25, 537-538.	5.7	6
47	Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade. Cell Reports, 2015, 12, 1339-1352.	2.9	100
48	Autophagy researchers. Autophagy, 2014, 10, 393-396.	4.3	1
49	p62 Is Required for Stem Cell/Progenitor Retention through Inhibition of IKK/NF-κB/Ccl4 Signaling at the Bone Marrow Macrophage-Osteoblast Niche. Cell Reports, 2014, 9, 2084-2097.	2.9	56
50	A Macrophage NBR1-MEKK3 Complex Triggers JNK-Mediated Adipose Tissue Inflammation in Obesity. Cell Metabolism, 2014, 20, 499-511.	7.2	36
51	Metabolic Reprogramming of Stromal Fibroblasts through p62-mTORC1 Signaling Promotes Inflammation and Tumorigenesis. Cancer Cell, 2014, 26, 121-135.	7.7	258
52	K63 Polyubiquitination and Activation of mTOR by the p62-TRAF6 Complex in Nutrient-Activated Cells. Molecular Cell, 2013, 51, 283-296.	4.5	230
53	Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis. Cell, 2013, 152, 599-611.	13.5	160
54	c-Myc phosphorylation by PKCζ represses prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6418-6423.	3.3	49

#	Article	IF	CITATIONS
55	p62 Links \hat{I}^2 -adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	3.9	107
56	Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. Journal of Clinical Investigation, 2013, 123, 2231-2243.	3.9	103
57	Role of adipose and hepatic atypical protein kinase C lambda (PKCλ) in the development of obesity and glucose intolerance. Adipocyte, 2012, 1, 203-214.	1.3	6
58	TRAF6 and p62 inhibit amyloid \hat{l}^2 -induced neuronal death through p75 neurotrophin receptor. Neurochemistry International, 2012, 61, 1289-1293.	1.9	43
59	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
60	The atypical PKCs in inflammation: NFâ $\in \hat{\mathbb{P}}$ B and beyond. Immunological Reviews, 2012, 246, 154-167.	2.8	106
61	p62: a versatile multitasker takes on cancer. Trends in Biochemical Sciences, 2012, 37, 230-236.	3.7	214
62	Feedback on Fat: p62-mTORC1-Autophagy Connections. Cell, 2011, 147, 724-727.	13.5	122
63	p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway. Molecular Cell, 2011, 44, 134-146.	4.5	422
64	Targeting leucine addiction and autophagy in melanoma. Pigment Cell and Melanoma Research, 2011, 24, 588-590.	1.5	2
65	Fine tuning NF-κB: new openings for PKC-ζ. Nature Immunology, 2011, 12, 12-14.	7.0	7
66	Phosphorylation of p62 by cdk1 Controls the Timely Transit of Cells through Mitosis and Tumor Cell Proliferation. Molecular and Cellular Biology, 2011, 31, 105-117.	1.1	67
67	Atypical protein kinase C (aPKCζ and aPKCλ) is dispensable for mammalian hematopoietic stem cell activity and blood formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9957-9962.	3.3	47
68	NBR1 is a new PB1 signalling adapter in Th2 differentiation and allergic airway inflammation in vivo. EMBO Journal, 2010, 29, 3421-3433.	3.5	28
69	A functional role for the p62–ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Reports, 2010, 11, 226-232.	2.0	97
70	Protein Kinase Cζ Mediates Cigarette Smoke/Aldehyde- and Lipopolysaccharide-induced Lung Inflammation and Histone Modifications. Journal of Biological Chemistry, 2010, 285, 5405-5416.	1.6	57
71	PKCζ-Regulated Inflammation in the Nonhematopoietic Compartment Is Critical for Obesity-Induced Glucose Intolerance. Cell Metabolism, 2010, 12, 65-77.	7.2	26

72 Atypical PKCs, NF- $\hat{I}^{2}B$, and Inflammation. , 2010, , 223-244.

#	Article	IF	CITATIONS
73	Loss of PKCλ/ι impairs Th2 establishment and allergic airway inflammation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1099-1104.	3.3	38
74	Protein Kinase Cζ Represses the Interleukin-6 Promoter and Impairs Tumorigenesis In Vivo. Molecular and Cellular Biology, 2009, 29, 104-115.	1.1	76
75	Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-ήB activation and invasive prostate carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12962-12967.	3.3	40
76	Nephrin Deficiency Activates NF-κB and Promotes Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1733-1743.	3.0	54
77	The Par-4/PTEN connection in tumor suppression. Cell Cycle, 2009, 8, 2518-2522.	1.3	25
78	AMPA receptor trafficking and synaptic plasticity require SQSTM1/p62. Hippocampus, 2009, 19, 392-406.	0.9	37
79	Regulation of macrophage activation and septic shock susceptibility <i>via</i> p21(WAF1/CIP1). European Journal of Immunology, 2009, 39, 810-819.	1.6	58
80	To aggregate or not to aggregate? A new role for p62. EMBO Reports, 2009, 10, 804-804.	2.0	28
81	Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death and Differentiation, 2009, 16, 1426-1437.	5.0	71
82	p62 at the Crossroads of Autophagy, Apoptosis, and Cancer. Cell, 2009, 137, 1001-1004.	13.5	935
83	Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO Journal, 2008, 27, 2181-2193.	3.5	77
84	Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. Journal of Neurochemistry, 2008, 106, 107-120.	2.1	222
85	The Signaling Adaptor p62 Is an Important NF-κBÂMediator in Tumorigenesis. Cancer Cell, 2008, 13, 343-354.	7.7	512
86	Akt regulation and lung cancer: A novel role and mechanism of action for the tumor suppressor Par-4. Cell Cycle, 2008, 7, 2817-2820.	1.3	14
87	Inactivation of the Candidate Tumor Suppressor Par-4 in Endometrial Cancer. Cancer Research, 2007, 67, 1927-1934.	0.4	100
88	Signal integration and diversification through the p62 scaffold protein. Trends in Biochemical Sciences, 2007, 32, 95-100.	3.7	299
89	Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metabolism, 2006, 3, 211-222.	7.2	262
90	Cell Signaling and Function Organized by PB1 Domain Interactions. Molecular Cell, 2006, 23, 631-640.	4.5	177

#	Article	IF	CITATIONS
91	PKCζ at the crossroad of NF-κB and Jak1/Stat6 signaling pathways. Cell Death and Differentiation, 2006, 13, 702-711.	5.0	114
92	The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO Journal, 2006, 25, 3524-3533.	3.5	54
93	Tumourâ€suppression activity of the proapoptotic regulator Par4. EMBO Reports, 2005, 6, 577-583.	2.0	99
94	Control of T helper 2 cell function and allergic airway inflammation by PKCÂ. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9866-9871.	3.3	87
95	The p62 Scaffold Regulates Nerve Growth Factor-induced NF-κB Activation by Influencing TRAF6 Polyubiquitination. Journal of Biological Chemistry, 2005, 280, 35625-35629.	1.6	196
96	Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis. EMBO Journal, 2004, 23, 4595-4605.	3.5	53
97	The Atypical PKC-Interacting Protein p62 Is an Important Mediator of RANK-Activated Osteoclastogenesis. Developmental Cell, 2004, 6, 303-309.	3.1	286
98	Essential role of RelA Ser311 phosphorylation by ÂPKC in NF-ÂB transcriptional activation. EMBO Journal, 2003, 22, 3910-3918.	3.5	285
99	NFâ€ÎºB activation by protein kinase C isoforms and Bâ€cell function. EMBO Reports, 2003, 4, 31-36.	2.0	115
100	Par-4 Keeps the Atypical PKCs at Bay. Cell Cycle, 2003, 2, 70-71.	1.3	11
101	Par-4 keeps the atypical PKCs at bay. Cell Cycle, 2003, 2, 71-2.	1.3	7
102	The Drosophila Atypical Protein Kinase C-Ref(2)P Complex Constitutes a Conserved Module for Signaling in the Toll Pathway. Molecular and Cellular Biology, 2002, 22, 8787-8795.	1.1	60
103	The atypical PKC scaffold protein P62 is a novel target for anti-inflammatory and anti-cancer therapies. Advances in Enzyme Regulation, 2002, 42, 173-179.	2.9	10
104	OPR, PC and AID: all in the PB1 family. Trends in Biochemical Sciences, 2002, 27, 10.	3.7	63
105	Regulation and role of the atypical pkc isoforms in cell survival during tumor transformation. Advances in Enzyme Regulation, 2001, 41, 99-120.	2.9	12
106	Targeted Disruption of the ζPKC Gene Results in the Impairment of the NF-κB Pathway. Molecular Cell, 2001, 8, 771-780.	4.5	362
107	Nerve Growth Factor Stimulates Multisite Tyrosine Phosphorylation and Activation of the Atypical Protein Kinase C's via a src Kinase Pathway. Molecular and Cellular Biology, 2001, 21, 8414-8427.	1.1	84
108	The Atypical Protein Kinase C-interacting Protein p62 Is a Scaffold for NF-κB Activation by Nerve Growth Factor. Journal of Biological Chemistry, 2001, 276, 7709-7712.	1.6	159

#	Article	IF	CITATIONS
109	MEK5, a New Target of the Atypical Protein Kinase C Isoforms in Mitogenic Signaling. Molecular and Cellular Biology, 2001, 21, 1218-1227.	1.1	71
110	The atypical protein kinase Cs. EMBO Reports, 2000, 1, 399-403.	2.0	207
111	The atypical PKC-interacting protein p62 channels NF-kappa B activation by the IL-1-TRAF6 pathway. EMBO Journal, 2000, 19, 1576-1586.	3.5	386
112	The Mkk3/6-p38–Signaling Cascade Alters the Subcellular Distribution of Hnrnp A1 and Modulates Alternative Splicing Regulation. Journal of Cell Biology, 2000, 149, 307-316.	2.3	309
113	Cleavage of ζPKC but Not λ/ιPKC by Caspase-3 during UV-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 10765-10770.	1.6	81
114	Inactivation of the Inhibitory κB Protein Kinase/Nuclear Factor κB Pathway by Par-4 Expression Potentiates Tumor Necrosis Factor α-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 19606-19612.	1.6	114
115	The interaction of p62 with RIP links the atypical PKCs to NF-kappa B activation. EMBO Journal, 1999, 18, 3044-3053.	3.5	348
116	The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO Journal, 1999, 18, 6362-6369.	3.5	108
117	Activation of ll̂ºB Kinase l̂² by Protein Kinase C Isoforms. Molecular and Cellular Biology, 1999, 19, 2180-2188.	1.1	354
118	The Activation of p38 and Apoptosis by the Inhibition of Erk Is Antagonized by the Phosphoinositide 3-Kinase/Akt Pathway. Journal of Biological Chemistry, 1998, 273, 10792-10797.	1.6	235
119	Localization of Atypical Protein Kinase C Isoforms into Lysosome-Targeted Endosomes through Interaction with p62. Molecular and Cellular Biology, 1998, 18, 3069-3080.	1.1	216
120	Positioning Atypical Protein Kinase C Isoforms in the UV-Induced Apoptotic Signaling Cascade. Molecular and Cellular Biology, 1997, 17, 4346-4354.	1.1	169
121	Role of Diacylglycerol-Regulated Protein Kinase C Isotypes in Growth Factor Activation of the Raf-1 Protein Kinase. Molecular and Cellular Biology, 1997, 17, 732-741.	1.1	294
122	The Product of par-4, a Gene Induced during Apoptosis, Interacts Selectively with the Atypical Isoforms of Protein Kinase C. Cell, 1996, 86, 777-786.	13.5	363
123	Lambda-Interacting Protein, A Novel Protein That Specifically Interacts with the Zinc Finger Domain of the Atypical Protein Kinase C Isotype λ/ι and Stimulates Its Kinase Activity In Vitro and In Vivo. Molecular and Cellular Biology, 1996, 16, 105-114.	1.1	128
124	Cross-talk between Different Enhancer Elements during Mitogenic Induction of the Human Stromelysin-1 Gene. Journal of Biological Chemistry, 1996, 271, 18231-18236.	1.6	64
125	Protein kinase C-zeta mediates NF-kappa B activation in human immunodeficiency virus-infected monocytes. Journal of Virology, 1996, 70, 223-231.	1.5	84
126	Molecular Characterization of a Novel Transcription Factor That Controls Stromelysin Expression. Molecular and Cellular Biology, 1995, 15, 3164-3170.	1.1	34

#	Article	IF	CITATIONS
127	Alterations in levels of different protein kinase C isotypes and their influence on behavior of squamous cell carcinoma of the oral cavity: ɛPKC, a novel prognostic factor for relapse and survival. Head and Neck, 1995, 17, 516-525.	0.9	43
128	Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta EMBO Journal, 1995, 14, 6157-6163.	3.5	245
129	Identification of Heterogeneous Ribonucleoprotein A1 as a Novel Substrate for Protein Kinase C ζ. Journal of Biological Chemistry, 1995, 270, 15884-15891.	1.6	77
130	Evidence for a Bifurcation of the Mitogenic Signaling Pathway Activated by Ras and Phosphatidylcholine-hydrolyzing Phospholipase C. Journal of Biological Chemistry, 1995, 270, 21299-21306.	1.6	71
131	Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal, 1995, 14, 6157-63.	3.5	73
132	NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C from Bacillus cereus acquire a transformed phenotype Molecular and Cellular Biology, 1994, 14, 646-654.	1.1	54
133	Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta Journal of Biological Chemistry, 1994, 269, 31706-31710.	1.6	196
134	Phospholipid Degradation and ζPKC Activation during Mitogenic Signal Transduction. , 1994, , 43-49.		0
135	NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C from <i>Bacillus cereus</i> acquire a transformed phenotype. Molecular and Cellular Biology, 1994, 14, 646-654.	1.1	16
136	zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. EMBO Journal, 1994, 13, 2842-8.	3.5	67
137	Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. Journal of Biological Chemistry, 1994, 269, 31706-10.	1.6	172
138	Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. Journal of Biological Chemistry, 1994, 269, 19200-2.	1.6	365
139	Zeta PKC plays a critical role during stromelysin promoter activation by platelet-derived growth factor through a novel palindromic element. Journal of Biological Chemistry, 1994, 269, 10044-9.	1.6	36
140	Protein kinase C ζ isoform is critical for mitogenic signal transduction. Cell, 1993, 74, 555-563.	13.5	393
141	Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-kappa B-like activity in Xenopus laevis oocytes Molecular and Cellular Biology, 1993, 13, 1290-1295.	1.1	136
142	A dominant negative protein kinase C zeta subspecies blocks NF-kappa B activation Molecular and Cellular Biology, 1993, 13, 4770-4775.	1.1	241
143	Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction Molecular and Cellular Biology, 1993, 13, 7645-7651.	1.1	138
144	Phosphatidylcholine hydrolysis activates NF-kappa B and increases human immunodeficiency virus replication in human monocytes and T lymphocytes. Journal of Virology, 1993, 67, 6596-6604.	1.5	99

#	Article	IF	CITATIONS
145	Inhibition of Protein Kinase C ζ Subspecies Blocks the Activation of an NF-Kappa B-Like Activity in <i>Xenopus laevis</i> Oocytes. Molecular and Cellular Biology, 1993, 13, 1290-1295.	1.1	60
146	A dominant negative protein kinase C zeta subspecies blocks NF-kappa B activation. Molecular and Cellular Biology, 1993, 13, 4770-4775.	1.1	106
147	Hydrolysis of Phosphatidylcholine Couples Ras to Activation of Raf Protein Kinase During Mitogenic Signal Transduction. Molecular and Cellular Biology, 1993, 13, 7645-7651.	1.1	59
148	Hydrolysis of phosphatidylcholine is stimulated by Ras proteins during mitogenic signal transduction Molecular and Cellular Biology, 1992, 12, 5329-5335.	1.1	61
149	Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals Molecular and Cellular Biology, 1992, 12, 302-308.	1.1	40
150	Evidence for a role of protein kinase C zeta subspecies in maturation of Xenopus laevis oocytes Molecular and Cellular Biology, 1992, 12, 3776-3783.	1.1	164
151	Phospholipase C-Mediated Hydrolysis of Phosphatidylcholine Is a Target of Transforming Growth Factor βl Inhibitory Signals. Molecular and Cellular Biology, 1992, 12, 302-308.	1.1	16
152	Evidence for a Role of Protein Kinase C ζ Subspecies in Maturation of <i>Xenopus laevis</i> Oocytes. Molecular and Cellular Biology, 1992, 12, 3776-3783.	1.1	66
153	Hydrolysis of Phosphatidylcholine Is Stimulated by Ras Proteins during Mitogenic Signal Transduction. Molecular and Cellular Biology, 1992, 12, 5329-5335.	1.1	35
154	Mechanism of inhibition of adenylate cyclase by phospholipase C-catalyzed hydrolysis of phosphatidylcholine. Involvement of a pertussis toxin-sensitive G protein and protein kinase C Journal of Biological Chemistry, 1991, 266, 1170-1176.	1.6	39
155	Requirement of phospholipase C-catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and ras p21 Journal of Biological Chemistry, 1991, 266, 6825-6829.	1.6	59
156	Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C. EMBO Journal, 1991, 10, 3215-20.	3.5	22
157	Protein kinase C-independent expression of stromelysin by platelet-derived growth factor, ras oncogene, and phosphatidylcholine-hydrolyzing phospholipase C. Journal of Biological Chemistry, 1991, 266, 22597-602.	1.6	29
158	Mechanism of inhibition of adenylate cyclase by phospholipase C-catalyzed hydrolysis of phosphatidylcholine. Involvement of a pertussis toxin-sensitive G protein and protein kinase C. Journal of Biological Chemistry, 1991, 266, 1170-6.	1.6	36
159	Requirement of phospholipase C-catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and ras p21. Journal of Biological Chemistry, 1991, 266, 6825-9.	1.6	57
160	Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes EMBO Journal, 1990, 9, 3907-3912.	3.5	91
161	Phospholipase C-mediated hydrolysis of phosphatidlycholine is an important step in PDGF-stimulated DNA synthesis. Cell, 1990, 61, 1113-1120.	13.5	179
162	Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade Journal of Biological Chemistry, 1990, 265, 9022-9026.	1.6	58

#	Article	IF	CITATIONS
163	Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes. EMBO Journal, 1990, 9, 3907-12.	3.5	31
164	Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade. Journal of Biological Chemistry, 1990, 265, 9022-6.	1.6	56
165	Phospholipase C-mediated hydrolysis of phosphatidylcholine is activated by muscarinic agonists. Biochemical Journal, 1989, 263, 115-120.	1.7	46
166	Activation of phosphatidylcholine-specific phospholipase C in cell growth and oncogene transformation. Biochemical Society Transactions, 1989, 17, 988-991.	1.6	23
167	Protein kinase C zeta. The AFCS-nature Molecule Pages, 0, , .	0.2	12
168	Sqstm1. The AFCS-nature Molecule Pages, 0, , .	0.2	0