
Jason M Tenbarge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weak Alfvénic turbulence in relativistic plasmas. Part 2. Current sheets and dissipation – ERRATUM. Journal of Plasma Physics, 2022, 88, .	2.1	0
2	Characterizing velocity–space signatures of electron energization in large-guide-field collisionless magnetic reconnection. Physics of Plasmas, 2022, 29, .	1.9	9
3	Dependence of Solar Wind Proton Temperature on the Polarization Properties of Alfvénic Fluctuations at Ion-kinetic Scales. Astrophysical Journal, 2021, 912, 101.	4.5	9
4	Dissipation measures in weakly collisional plasmas. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4857-4873.	4.4	29
5	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	23.0	52
6	A field–particle correlation analysis of a perpendicular magnetized collisionless shock. Journal of Plasma Physics, 2021, 87, .	2.1	14
7	Magnetic Field Reconstruction for a Realistic Multi-Point, Multi-Scale Spacecraft Observatory. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	6
8	Weak Alfvénic turbulence in relativistic plasmas. Part 2. current sheets and dissipation. Journal of Plasma Physics, 2021, 87, .	2.1	13
9	Weak Alfvénic turbulence in relativistic plasmas. Part 1. Dynamical equations and basic dynamics of interacting resonant triads. Journal of Plasma Physics, 2021, 87, .	2.1	9
10	Noise-induced magnetic field saturation in kinetic simulations. Journal of Plasma Physics, 2020, 86, .	2.1	9
11	Diagnosing collisionless energy transfer using field–particle correlations: Alfvén-ion cyclotronAturbulence. Journal of Plasma Physics, 2020, 86, .	2.1	29
12	Dynamo in Weakly Collisional Nonmagnetized Plasmas Impeded by Landau Damping of Magnetic Fields. Physical Review Letters, 2020, 124, 255102.	7.8	13
13	Collisionless energy transfer in kinetic turbulence: field–particle correlations in FourierÂspace. Journal of Plasma Physics, 2019, 85, .	2.1	19
14	An Extended MHD Study of the 16 October 2015 MMS Diffusion Region Crossing. Journal of Geophysical Research: Space Physics, 2019, 124, 8474-8487.	2.4	7
15	Temperature-dependent Saturation of Weibel-type Instabilities in Counter-streaming Plasmas. Astrophysical Journal Letters, 2019, 872, L28.	8.3	8
16	Effect of a weak ion collisionality on the dynamics of kinetic electrostatic shocks. Journal of Plasma Physics, 2019, 85, .	2.1	9
17	Low Mach-number collisionless electrostatic shocks and associated ion acceleration. Plasma Physics and Controlled Fusion, 2018, 60, 035004.	2.1	15
18	Diagnosing collisionless energy transfer using field–particle correlations: gyrokinetic turbulence. Journal of Plasma Physics, 2017, 83, .	2.1	61

JASON M TENBARGE

#	Article	IF	CITATIONS
19	ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE. Astrophysical Journal Letters, 2016, 832, L24.	8.3	37
20	Multiscale Nature of the Dissipation Range in Gyrokinetic Simulations of Alfvénic Turbulence. Physical Review Letters, 2015, 115, 025003.	7.8	88
21	Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations. Physics of Plasmas, 2014, 21, 020708.	1.9	35
22	THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2014, 790, L20.	8.3	49
23	PHYSICAL INTERPRETATION OF THE ANGLE-DEPENDENT MAGNETIC HELICITY SPECTRUM IN THE SOLAR WIND: THE NATURE OF TURBULENT FLUCTUATIONS NEAR THE PROTON GYRORADIUS SCALE. Astrophysical Journal, 2014, 785, 138.	4.5	57
24	VALIDITY OF THE TAYLOR HYPOTHESIS FOR LINEAR KINETIC WAVES IN THE WEAKLY COLLISIONAL SOLAR WIND. Astrophysical Journal, 2014, 789, 106.	4.5	67
25	An oscillating Langevin antenna for driving plasma turbulence simulations. Computer Physics Communications, 2014, 185, 578-589.	7.5	41
26	CURRENT SHEETS AND COLLISIONLESS DAMPING IN KINETIC PLASMA TURBULENCE. Astrophysical Journal Letters, 2013, 771, L27.	8.3	127
27	COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE. Astrophysical Journal, 2013, 774, 139.	4.5	71
28	Evidence of critical balance in kinetic Alfvén wave turbulence simulations. Physics of Plasmas, 2012, 19,	1.9	75
29	Scale dependence of the variance anisotropy near the proton gyroradius scale: Additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. Journal of Geophysical Research, 2012, 117, .	3.3	42
30	INTERPRETING MAGNETIC VARIANCE ANISOTROPY MEASUREMENTS IN THE SOLAR WIND. Astrophysical Journal, 2012, 753, 107.	4.5	64
31	THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2012, 753, L19.	8.3	136
32	USING SYNTHETIC SPACECRAFT DATA TO INTERPRET COMPRESSIBLE FLUCTUATIONS IN SOLAR WIND TURBULENCE. Astrophysical Journal, 2012, 755, 159.	4.5	89
33	Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales. Physical Review Letters, 2011, 107, 035004.	7.8	205
34	A weakened cascade model for turbulence in astrophysical plasmas. Physics of Plasmas, 2011, 18, .	1.9	80