Zhiwei Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. Journal of the European Ceramic Society, 2019, 39, 1397-1410.	5.7	121
2	Crystallization, structure and characterization of MgO-Al2O3-SiO2-P2O5 transparent glass-ceramics with high crystallinity. Journal of Non-Crystalline Solids, 2018, 481, 123-131.	3.1	79
3	Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents. Journal of the European Ceramic Society, 2018, 38, 4533-4542.	5.7	74
4	Preparation and characterization of glass–ceramic foams with waste quartz sand and coal gangue in different proportions. Journal of Porous Materials, 2016, 23, 231-238.	2.6	49
5	Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity. Ceramics International, 2015, 41, 14130-14136.	4.8	38
6	Sr2+/Y3+ co-doped MgO-Al2O3-SiO2-based glasses and transparent glass-ceramics: Crystallization, structure and properties. Ceramics International, 2019, 45, 2036-2043.	4.8	34
7	Characterization of structure and properties of MgO-Al2O3-SiO2-B2O3-Cr2O3 glass-ceramics. Journal of Non-Crystalline Solids, 2020, 543, 120154.	3.1	34
8	Preparation and broadband white emission of Ce3+-doped transparent glass-ceramics containing ZnO nanocrystals for WLEDs applications. Journal of Alloys and Compounds, 2021, 875, 159979.	5.5	26
9	Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: Effect of La2O3 addition. Ceramics International, 2020, 46, 17698-17706.	4.8	25
10	Effects of nitrogen and lanthanum on the preparation and properties of La–Ca–Si–Al–O–N oxynitride glasses. Journal of Non-Crystalline Solids, 2013, 361, 17-25.	3.1	22
11	Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes. Solid State Ionics, 2020, 345, 115177.	2.7	22
12	MgO-doping in the Li 2 O–ZnO–Al 2 O 3 –SiO 2 glass-ceramics for better sealing with steel. Journal of Non-Crystalline Solids, 2014, 405, 170-175.	3.1	20
13	Effect of F/O ratio on up-conversion and down-conversion luminescence properties of Er3+/Yb3+ co-doped SiO2–Al2O3–AlF3-Gd2O3–Na2O glass. Journal of Alloys and Compounds, 2020, 827, 154274.	5.5	19
14	Effects of a dual doping strategy on the structure and ionic conductivity of garnet-type electrolyte. Solid State Ionics, 2020, 356, 115427.	2.7	18
15	Er3+/Yb3+ co-doped SiO2-Al2O3-CaO-CaF2 glass: Structure, J-O analysis and fluorescent properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114919.	3.5	18
16	Thermal, structural and electrical properties of fluorine-doped Li3.6Al0.8Ti4.0P7.6O30-/2F (xÂ= 0, 0.5, 1,) Tj ETQq	0 <u>0 0</u> rgBT	/Overlock 1

17	Transparent oxynitride glasses: Synthesis, microstructure, optical transmittance and ballistic resistance. Journal of Non-Crystalline Solids, 2013, 378, 45-49.	3.1	16
18	The role and stabilization behavior of heavy metal ions in eco-friendly porous semi-vitrified ceramics for construction application. Journal of Cleaner Production, 2021, 292, 125855.	9.3	16

Zhiwei Luo

#	Article	IF	CITATIONS
19	The preparation and properties of zirconia-doped Y–Si–Al–O–N oxynitride glasses and glass-ceramics. Ceramics International, 2013, 39, 8885-8892.	4.8	15
20	La 2 O 3 substitution in Li-Al-P-O-N glasses for potential solid electrolytes applications. Solid State Ionics, 2016, 295, 104-110.	2.7	15
21	Preparation and properties of Li2O-La2O3-ZrO2-P2O5 glass ceramics for potential solid electrolyte applications. Solid State Ionics, 2019, 332, 77-85.	2.7	15
22	Use of steel slag and quartz sandâ€ŧailing for the preparation of an ecoâ€friendly permeable brick. International Journal of Applied Ceramic Technology, 2020, 17, 94-104.	2.1	15
23	Preparation, crystallization kinetics, and optical temperature sensing properties of Er3+-Yb3+ co-doped fluorosilicate glass-ceramics containing ZnAl2O4 crystals. Journal of Alloys and Compounds, 2022, 895, 162673.	5.5	15
24	Synthesis, crystallization behavior, microstructure and mechanical properties of oxynitride glass-ceramics with fluorine addition. Journal of Non-Crystalline Solids, 2013, 362, 207-215.	3.1	14
25	Sintering behavior, microstructures and mechanical properties of porous CaO-Al2O3-SiO2-Si3N4 glass-ceramics. Journal of Alloys and Compounds, 2019, 773, 71-77.	5.5	14
26	Microstructures and energy storage properties of BSN ceramics with crystallizable glass addition. Journal of Materials Science: Materials in Electronics, 2018, 29, 5934-5943.	2.2	13
27	Sintering behavior, microstructure and mechanical properties of various fluorine-containing Y-SiAlON glass-ceramics. Journal of Non-Crystalline Solids, 2014, 388, 62-67.	3.1	12
28	Crystal structure refinement, microstructure and ionic conductivity of ATi2(PO4)3 (A=Li, Na, K) solid electrolytes. Ceramics International, 2020, 46, 15613-15620.	4.8	12
29	ZrO2-doped transparent glass-ceramics embedding ZnO nano-crystalline with enhanced defect emission for potential yellow-light emitter applications. Ceramics International, 2021, 47, 35073-35080.	4.8	12
30	Effect of Tb3+ ion concentration on the up-conversion and down-conversion luminescence properties of the Yb3+/Ho3+/Tb3+ tri-doped SiO2–Al2O3–Y2O3–NaF–CaF2 glasses. Optical Materials, 2021, 121, 111567.	3.6	12
31	Effects of nitrogen on phase formation, microstructure and mechanical properties of Y–Ca–Si–Al–O–N oxynitride glass–ceramics. Journal of Non-Crystalline Solids, 2013, 368, 79-85.	3.1	11
32	Zn–Sr mixing in the Y-sialon glass: Formation, properties and ballistic resistance. Journal of Non-Crystalline Solids, 2015, 421, 41-47.	3.1	10
33	Crystallization kinetics and phase formation of Li2O-SiO2-Si3N4 glass-ceramics with P2O5 nucleating agent. Journal of Alloys and Compounds, 2019, 786, 688-697.	5.5	10
34	Crystallization kinetics and optical properties of transparent glass-ceramics embedding ZnGa2O4 nanocrystals with enhanced defect luminescence. Journal of Non-Crystalline Solids, 2022, 576, 121255.	3.1	10
35	Synthesis and properties of AlN/MAS/Si3N4 ternary glass-ceramic composites with in-situ grown rod-like β-Si3N4 crystals. Ceramics International, 2018, 44, 1875-1880.	4.8	9
36	Effects of MO (M = Mg, Ca, Ba) on crystallization and flexural strength of semi-transparent lithium disilicate glass-ceramics. Bulletin of Materials Science, 2011, 34, 1511-1516.	1.7	7

Zhiwei Luo

#	Article	IF	CITATIONS
37	CoO-doped MgO–Al2O3–SiO2-colored transparent glass–ceramics with high crystallinity. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
38	Effect of Fe2O3 substitution for Al2O3 on the structure and properties of Na-Fe-Al-P-O-N oxynitride glasses. Journal of Non-Crystalline Solids, 2019, 512, 132-139.	3.1	7
39	Effects of Ce3+ Ions on Physicochemical and Optical Properties of Gd2O3-Ga2O3-Al2O3-SiO2-Na2O Glass. Silicon, 2022, 14, 7971-7982.	3.3	7
40	La2O3-added lithium-ion conducting silicate oxynitride glasses. Solid State Ionics, 2018, 317, 76-82.	2.7	6
41	Controllable preparation and high ionic conductivity of Fe2O3-doped 46Li2O-4Al2O3-50P2O5 glass-ceramics. Journal of Non-Crystalline Solids, 2018, 500, 401-409.	3.1	6
42	Color tunable up-conversion luminescence characteristics of Yb3+-Er3+-Tm3+ tri-doped fluorosilicate glass potentially used in WLED field. Optical Materials, 2021, 119, 111320.	3.6	5
43	Crystallization kinetics and blue-light fluorescence characteristics of transparent ZnO-Ga2O3–SiO2 glass-ceramics containing ZnGa2O4 nanocrystals. Optical Materials, 2022, 128, 112382.	3.6	5
44	The Effects of Co2O3 Addition on Crystallization, Microstructure and Properties of Cordierite-Based Glass-Ceramics. Silicon, 2018, 10, 2123-2128.	3.3	4
45	Enhanced defect emission of TiO2-doped transparent glass-ceramics embedding ZnO quantum dots with optimized heat-treatment schedule. Ceramics International, 2022, 48, 5609-5616.	4.8	4
46	Effect of sintering temperature and holding time on the crystal phase, microstructure, and ionic conductivity of NASICON-type 33Na2O-40ZrO2-40SiO2-10P2O5 solid electrolytes. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	4
47	In situ synthesis and properties of self-reinforced \$\$hbox {Si}_{3} hbox {N}_{4}extendash hbox		