Mark Tibbett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249258/publications.pdf

Version: 2024-02-01

76326 88630 6,067 145 40 70 citations h-index g-index papers 161 161 161 6730 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soil <scp>DNA</scp> chronosequence analysis shows bacterial community reâ€assembly following postâ€mining forest rehabilitation. Restoration Ecology, 2023, 31, .	2.9	3
2	Environmental Risks Assessment of Kaolin Mines and Their Brick Products Using Monte Carlo Simulations. Earth Systems and Environment, 2022, 6, 157-174.	6.2	12
3	Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2022, 60, 349-359.	1.1	6
4	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 2022, 472, 577-594.	3.7	6
5	Applying cover crop residues as diverse mixtures increases initial microbial assimilation of crop residueâ€derived carbon. European Journal of Soil Science, 2022, 73, .	3.9	6
6	Next generation restoration metrics: Using soil eDNA bacterial community data to measure trajectories towards rehabilitation targets. Journal of Environmental Management, 2022, 310, 114748.	7.8	14
7	Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist, 2022, 235, 2046-2053.	7.3	3
8	Enduring legacy of coal mining on the fungal community in a High Arctic soil after five decades. Pedosphere, 2022, , .	4.0	0
9	Plant, soil and faunal responses to a contrived pH gradient. Plant and Soil, 2021, 462, 505-524.	3.7	13
10	Cadmium stress causes differential effects on growth and the secretion of carbon-degrading enzymes in four mycorrhizal basidiomycetes. Mycoscience, 2021, 62, 132-136.	0.8	0
11	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. Ecological Engineering, 2021, 165, 106222.	3.6	12
12	The transfer of trace metals in the soil-plant-arthropod system. Science of the Total Environment, 2021, 779, 146260.	8.0	27
13	The benefits of fertiliser application on tree growth are transient in restored jarrah forest. Trees, Forests and People, 2021, 5, 100112.	1.9	3
14	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	4.0	10
15	Natural attenuation of legacy hydrocarbon spills in pristine soils is feasible despite difficult environmental conditions in the monsoon tropics. Science of the Total Environment, 2021, 799, 149335.	8.0	3
16	Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils. Microbial Ecology, 2020, 79, 420-431.	2.8	12
17	Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2020, 171, 103925.	4.2	37
18	Helping stakeholders select and apply appraisal tools to mitigate soil threats: Researchers' experiences from across Europe. Journal of Environmental Management, 2020, 257, 110005.	7.8	14

#	Article	IF	Citations
19	Evaluating Heathland Restoration Belowground Using Different Quality Indices of Soil Chemical and Biological Properties. Agronomy, 2020, 10, 1140.	3.0	5
20	The where, when and what of phosphorus fertilisation for seedling establishment in a biodiverse jarrah forest restoration after bauxite mining in Western Australia. Ecological Engineering, 2020, 153, 105907.	3.6	13
21	Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicology and Environmental Safety, 2020, 202, 110917.	6.0	24
22	Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Horticulture Research, 2020, 7, 71.	6.3	39
23	Forest Humus Type Governs Heavy Metal Accumulation in Specific Organic Matter Fractions. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	40
24	Identifying potential threats to soil biodiversity. PeerJ, 2020, 8, e9271.	2.0	60
25	Rethinking soil water repellency and its management. Plant Ecology, 2019, 220, 977-984.	1.6	8
26	Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena, 2019, 180, 401-415.	5.0	43
27	Enduring effects of large legumes and phosphorus fertiliser on jarrah forest restoration 15†years after bauxite mining. Forest Ecology and Management, 2019, 438, 204-214.	3.2	15
28	Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 2019, 196, 235-246.	3.2	20
29	Sensitivity of seedling growth to phosphorus supply in six tree species of the Australian Great Western Woodlands. Australian Journal of Botany, 2019, 67, 390.	0.6	14
30	Too much of a good thing: phosphorus over-fertilisation in rehabilitated landscapes of high biodiversity value. , 2019, , .		7
31	Applied phosphorus has long-term impacts on vegetation responses in restored jarrah forest. , 2019, , .		4
32	Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 2018, 160, 154-169.	5.0	50
33	Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environmental Pollution, 2018, 233, 1003-1012.	7.5	93
34	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145
35	Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability, 2018, 10, 4416.	3.2	28
36	Ectomycorrhizal Fungal Communities and Their Functional Traits Mediate Plant–Soil Interactions in Trace Element Contaminated Soils. Frontiers in Plant Science, 2018, 9, 1682.	3.6	31

#	Article	IF	Citations
37	Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms. Ecology and Evolution, 2018, 8, 8652-8664.	1.9	6
38	Phosphorus dynamics in a tropical forest soil restored after strip mining. Plant and Soil, 2018, 427, 105-123.	3.7	24
39	Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2018, 155, 281-292.	4.2	42
40	Amenity grassland quality following anaerobic digestate application. Grassland Science, 2018, 64, 185-189.	1.1	3
41	Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. PeerJ, 2018, 6, e4478.	2.0	18
42	Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ, 2018, 6, e6030.	2.0	47
43	The â€~known' genetic potential for microbial communities to degrade organic phosphorus is reduced in lowâ€pH soils. MicrobiologyOpen, 2017, 6, e00474.	3.0	34
44	Correlation between soil development and native plant growth in forest restoration after surface mining. Ecological Engineering, 2017, 106, 209-218.	3.6	32
45	Pronounced surface stratification of soil phosphorus, potassium and sulfur under pastures upstream of a eutrophic wetland and estuarine system. Soil Research, 2017, 55, 657.	1.1	5
46	Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Scientific Reports, 2017, 7, 2179.	3.3	30
47	Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil, 2016, 2, 487-498.	4.9	23
48	Poor regulation of phosphorus uptake and rhizosphere carboxylates in three phosphorus-hyperaccumulating species of Ptilotus. Plant and Soil, 2016, 402, 145-158.	3.7	9
49	Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 2016, 26, 67-82.	1.1	47
50	Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza, 2016, 26, 401-415.	2.8	13
51	Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. Soil Biology and Biochemistry, 2016, 93, 119-130.	8.8	17
52	Alleviating arsenic toxicity to plants in a simulated cover system with phosphate placement in topsoil and subsoil. , $2016, , .$		3
53	Interacting controls on innate sources of CO2 efflux from a calcareous arid zone soil under experimental acidification and wetting. Journal of Arid Environments, 2015, 122, 117-123.	2.4	15
54	Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiologia Plantarum, 2015, 154, 511-525.	5.2	30

#	Article	IF	CITATIONS
55	Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 2015, 24, 371-382.	5.8	163
56	Soil conditioning and plant-soil feedbacks in a modified forest ecosystem are soil-context dependent. Plant and Soil, 2015, 390, 183-194.	3.7	10
57	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. Forest Ecology and Management, 2015, 354, 10-17.	3.2	23
58	Long-term conditioning of soil by plantation eucalypts and pines does not affect growth of the native jarrah tree. Forest Ecology and Management, 2015, 338, 92-99.	3.2	10
59	Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands. Mycorrhiza, 2015, 25, 41-54.	2.8	5
60	Geotechnical systems that evolve with ecological processes. Environmental Earth Sciences, 2015, 73, 1067-1082.	2.7	20
61	Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings. Mycorrhiza, 2014, 24, 501-509.	2.8	30
62	A novel plant–fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytologist, 2014, 201, 1413-1422.	7.3	37
63	The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Science of the Total Environment, 2014, 472, 642-653.	8.0	211
64	Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell and Environment, 2014, 37, 911-921.	5.7	59
65	Advanced multivariate analysis to assess remediation of hydrocarbons in soils. Environmental Science and Pollution Research, 2014, 21, 11998-12005.	5 . 3	1
66	Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate? Plant and Soil, 2013, 373, 699-710.	3.7	23
67	The hidden organic carbon in deep mineral soils. Plant and Soil, 2013, 368, 641-648.	3.7	110
68	Human Versus Animal: Contrasting Decomposition Dynamics of Mammalian Analogues in Experimental Taphonomy. Journal of Forensic Sciences, 2013, 58, 583-591.	1.6	45
69	Step up funding to halt forensic folly. Nature, 2013, 501, 33-33.	27.8	1
70	Commensalism in an agroecosystem: hydraulic redistribution by deepâ€rooted legumes improves survival of a droughted shallowâ€rooted legume companion. Physiologia Plantarum, 2013, 149, 79-90.	5. 2	39
71	Rhizosphere 3: where plants meet soils down-under. Plant and Soil, 2012, 358, 1-5.	3.7	7
72	Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system. Australian Journal of Botany, 2012, 60, 661.	0.6	30

#	Article	IF	CITATIONS
73	Reforesting degraded agricultural landscapes with Eucalypts: Effects on carbon storage and soil fertility after 26years. Agriculture, Ecosystems and Environment, 2012, 163, 3-13.	5.3	45
74	A sustainable agricultural landscape for Australia: A review of interlacing carbon sequestration, biodiversity and salinity management in agroforestry systems. Agriculture, Ecosystems and Environment, 2012, 163, 28-36.	5. 3	79
75	Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell and Environment, 2012, 35, 2170-2180.	5.7	148
76	Soil phosphorus supply affects nodulation and N:P ratio in 11 perennial legume seedlings. Crop and Pasture Science, 2011, 62, 992.	1.5	15
77	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149
78	Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function. Environmental Pollution, 2011, 159, 2740-2749.	7.5	5
79	Contrasting responses to drought stress in herbaceous perennial legumes. Plant and Soil, 2011, 348, 299-314.	3.7	34
80	Just Add Water and Salt: the Optimisation of Petrogenic Hydrocarbon Biodegradation in Soils from Semi-arid Barrow Island, Western Australia. Water, Air, and Soil Pollution, 2011, 216, 513-525.	2.4	20
81	The development of soil organic matter in restored biodiverse Jarrah forests of South-Western Australia as determined by ASE and GCMS. Environmental Science and Pollution Research, 2011, 18, 1070-1078.	5.3	9
82	Optimising soil physical properties for rehabilitation of mined land $\hat{a} \in \text{``effects of tine type on soil strength and root proliferation., 2011,,.}$		2
83	Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Science International, 2010, 200, 60-66.	2.2	141
84	Soil carbon and litter development along a reconstructed biodiverse forest chronosequence of South-Western Australia. Biogeochemistry, 2010, 101, 197-209.	3.5	25
85	Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 328, 133-143.	3.7	86
86	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 331, 241-255.	3.7	110
87	Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain. Environmental Pollution, 2010, 158, 135-141.	7.5	42
88	Large-scale mine site restoration of Australian eucalypt forests after bauxite mining: soil management and ecosystem development., 2010,, 309-326.		19
89	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
90	The Role of Arbuscular Mycorrhizas in Organic Farming. , 2009, , 189-229.		7

#	Article	IF	CITATIONS
91	Putting the P in Ptilotus: a phosphorus-accumulating herb native to Australia. Annals of Botany, 2009, 103, 901-911.	2.9	42
92	Freezing skeletal muscle tissue does not affect its decomposition in soil: Evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples. Forensic Science International, 2009, 183, 6-13.	2.2	40
93	Soils of Contrasting pH Affect the Decomposition of Buried Mammalian (<i>Ovis aries</i>) Skeletal Muscle Tissue. Journal of Forensic Sciences, 2009, 54, 900-904.	1.6	49
94	Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Organic Geochemistry, 2009, 40, 293-300.	1.8	57
95	Microbial Community Analysis of Human Decomposition on Soil. , 2009, , 379-394.		46
96	Research in Forensic Taphonomy: A Soil-Based Perspective. , 2009, , 317-331.		10
97	Can Temperature Affect the Release of Ninhydrin-Reactive Nitrogen in Gravesoil Following the Burial of a Mammalian (Rattus rattus) Cadaver?., 2009,, 333-340.		2
98	Decomposition Studies Using Animal Models in Contrasting Environments: Evidence from Temporal Changes in Soil Chemistry and Microbial Activity., 2009,, 357-377.		12
99	Using Ninhydrin to Detect Gravesoil. Journal of Forensic Sciences, 2008, 53, 397-400.	1.6	42
100	Differential Uptake, Partitioning and Transfer of Cd and Zn in the Soilâ 'Pea Plantâ 'Aphid System. Environmental Science & Environmental Science & Environmental Science & Plantâ 'Aphid System. Environmenta	10.0	33
101	Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology, 2008, 40, 129-137.	4.3	134
102	Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition?. Applied Soil Ecology, 2008, 40, 529-535.	4.3	30
103	Sequential hydrocarbon biodegradation in a soil from arid coastal Australia, treated with oil under laboratory controlled conditions. Organic Geochemistry, 2008, 39, 1336-1346.	1.8	53
104	Re-creation of heathland on improved pasture using top soil removal and sulphur amendments: Edaphic drivers and impacts on ericoid mycorrhizas. Biological Conservation, 2008, 141, 1628-1635.	4.1	37
105	Changes in sewage sludge carbon forms along a treatment stream. Chemosphere, 2008, 72, 981-985.	8.2	8
106	The diversity of arbuscular mycorrhizas of selected AustralianFabaceae. Plant Biosystems, 2008, 142, 420-427.	1.6	16
107	Cadaver Decomposition and Soil. , 2008, , 29-51.		41
108	Soil Fungi Associated with Graves and Latrines. , 2008, , 67-107.		17

#	Article	IF	CITATIONS
109	Restoring Jarrah Forest after Bauxite Mining in Western Australia — The Effect of Fertilizer on Floristic Diversity and Composition. , 2008, , .		4
110	Perennial legumes native to Australia $\hat{a}\in$ " a preliminary investigation of nutritive value and response to cutting. Australian Journal of Experimental Agriculture, 2007, 47, 170.	1.0	24
111	Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia, 2007, 51, 295-299.	1.2	69
112	The cooler side of mycorrhizas: their occurrence and functioning at low temperatures. Canadian Journal of Botany, 2007, 85, 51-62.	1.1	49
113	Phosphate supply and arsenate toxicity in ectomycorrhizal fungi. Journal of Basic Microbiology, 2007, 47, 358-362.	3.3	9
114	Seedling response to phosphate addition and inoculation with arbuscular mycorrhizas and the implications for old-field restoration in Western Australia. Environmental and Experimental Botany, 2007, 61, 58-65.	4.2	41
115	Heathland Restoration on Former Agricultural Land: Effects of Artificial Acidification on the Availability and Uptake of Toxic Metal Cations. Water, Air, and Soil Pollution, 2007, 178, 287-295.	2.4	6
116	Contrasting behaviour of cadmium and zinc in a soil–plant–arthropod system. Chemosphere, 2006, 64, 1115-1121.	8.2	20
117	Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. Functional Plant Biology, 2006, 33, 1091.	2.1	44
118	Are Ericoid Mycorrhizas a Factor in the Success of Calluna vulgaris Heathland Restoration?. Restoration Ecology, 2006, 14, 187-195.	2.9	23
119	Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream. Biology and Fertility of Soils, 2006, 42, 186-197.	4.3	34
120	Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften, 2006, 94, 12-24.	1.6	487
121	Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 2006, 38, 1139-1145.	8.8	78
122	Mine Closure and Ecosystem Development â \check{Z}^- Alcan Gove Bauxite Mine, Northern Territory, Australia. , 2006, , .		7
123	Phosphorus Fertiliser Placement and Seedling Success in Australian Jarrah Forest., 2006, , .		6
124	OzFACE: the Australian savanna free air CO2 enrichment facility and its relevance to carbon-cycling issues in a tropical savanna. Australian Journal of Botany, 2005, 53, 677.	0.6	24
125	Effects of aphid infestation on Cd and Zn concentration in wheat. Agriculture, Ecosystems and Environment, 2005, 109, 175-178.	5.3	8
126	Are Sulfurous Soil Amendments (S0, Fe(II)SO4, Fe(III)SO4) an Effective Tool in the Restoration of Heathland and Acidic Grassland after Four Decades of Rock Phosphate Fertilization?. Restoration Ecology, 2005, 13, 83-91.	2.9	15

#	Article	IF	CITATIONS
127	Nitrogen dynamics under Lolium perenne after a single application of three different sewage sludge types from the same treatment stream. Bioresource Technology, 2004, 91, 233-241.	9.6	33
128	Sampling and analyzing metals in soils for archaeological prospection: A critique. Geoarchaeology - an International Journal, 2004, 19, 731-751.	1.5	25
129	A Laboratory Incubation Method for Determining the Rate of Microbiological Degradation of Skeletal Muscle Tissue in Soil. Journal of Forensic Sciences, 2004, 49, 1-6.	1.6	29
130	A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. Journal of Forensic Sciences, 2004, 49, 560-5.	1.6	12
131	Transfer of cadmium and zinc from sewage sludge amended soil through a plant–aphid system to newly emerged adult ladybirds (Coccinella septempunctata). Agriculture, Ecosystems and Environment, 2003, 99, 171-178.	5.3	40
132	Mushrooms and taphonomy: the fungi that mark woodland graves. The Mycologist, 2003, 17, 20-24.	0.4	43
133	Taphonomic Mycota: Fungi with Forensic Potential. Journal of Forensic Sciences, 2003, 48, 1-4.	1.6	77
134	Taphonomic mycota: fungi with forensic potential. Journal of Forensic Sciences, 2003, 48, 168-71.	1.6	11
135	Ectomycorrhizal Symbiosis can Enhance Plant Nutrition through Improved Access to Discrete Organic Nutrient Patches of High Resource Quality. Annals of Botany, 2002, 89, 783-789.	2.9	94
136	Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Microbiological Research, 2002, 157, 221-231.	5.3	18
137	Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza, 2002, 12, 249-255.	2.8	90
138	An Assessment of the Impact of Trees upon Archaeology Within a Relict Wetland. Journal of Archaeological Science, 2001, 28, 1069-1084.	2.4	6
139	Comparative growth of ectomycorrhizal basidiomycetes (Hebeloma spp.) on organic and inorganic nitrogen. Journal of Basic Microbiology, 2000, 40, 393-395.	3.3	6
140	Some potential inaccuracies of the p -nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Biology and Fertility of Soils, 2000, 31, 92-96.	4.3	5
141	Temperature regulation of extracellular proteases in ectomycorrhizal fungi (Hebeloma spp.) grown in axenic culture. Mycological Research, 1999, 103, 707-714.	2.5	41
142	The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycological Research, 1998, 102, 129-135.	2.5	101
143	Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate origin. Mycological Research, 1998, 102, 1525-1532.	2.5	52
144	Induction of cold active acid phosphomonoesterase activity at low temperature in psychrotrophic ectomycorrhizal Hebeloma spp Mycological Research, 1998, 102, 1533-1539.	2.5	29

#	Article	IF	CITATIONS
145	PRESENTATION AS A SERVICE TO THE RETAILER. Retail and Distribution Management, 1980, 8, 67-68.	0.1	0