List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249258/publications.pdf Version: 2024-02-01

MADE TIRRETT

#	Article	IF	CITATIONS
1	Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.	8.7	666
2	Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften, 2006, 94, 12-24.	1.6	487
3	The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Science of the Total Environment, 2014, 472, 642-653.	8.0	211
4	Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 2015, 24, 371-382.	5.8	163
5	Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist, 2011, 189, 366-370.	7.3	149
6	Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell and Environment, 2012, 35, 2170-2180.	5.7	148
7	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145
8	Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Science International, 2010, 200, 60-66.	2.2	141
9	Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology, 2008, 40, 129-137.	4.3	134
10	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 331, 241-255.	3.7	110
11	The hidden organic carbon in deep mineral soils. Plant and Soil, 2013, 368, 641-648.	3.7	110
12	The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycological Research, 1998, 102, 129-135.	2.5	101
13	Ectomycorrhizal Symbiosis can Enhance Plant Nutrition through Improved Access to Discrete Organic Nutrient Patches of High Resource Quality. Annals of Botany, 2002, 89, 783-789.	2.9	94
14	Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environmental Pollution, 2018, 233, 1003-1012.	7.5	93
15	Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza, 2002, 12, 249-255.	2.8	90
16	Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 328, 133-143.	3.7	86
17	A sustainable agricultural landscape for Australia: A review of interlacing carbon sequestration, biodiversity and salinity management in agroforestry systems. Agriculture, Ecosystems and Environment, 2012, 163, 28-36.	5.3	79
18	Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 2006, 38, 1139-1145.	8.8	78

#	Article	IF	CITATIONS
19	Taphonomic Mycota: Fungi with Forensic Potential. Journal of Forensic Sciences, 2003, 48, 1-4.	1.6	77
20	Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia, 2007, 51, 295-299.	1.2	69
21	Identifying potential threats to soil biodiversity. PeerJ, 2020, 8, e9271.	2.0	60
22	Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell and Environment, 2014, 37, 911-921.	5.7	59
23	Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Organic Geochemistry, 2009, 40, 293-300.	1.8	57
24	Sequential hydrocarbon biodegradation in a soil from arid coastal Australia, treated with oil under laboratory controlled conditions. Organic Geochemistry, 2008, 39, 1336-1346.	1.8	53
25	Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate origin. Mycological Research, 1998, 102, 1525-1532.	2.5	52
26	Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 2018, 160, 154-169.	5.0	50
27	The cooler side of mycorrhizas: their occurrence and functioning at low temperatures. Canadian Journal of Botany, 2007, 85, 51-62.	1.1	49
28	Soils of Contrasting pH Affect the Decomposition of Buried Mammalian (<i>Ovis aries</i>) Skeletal Muscle Tissue. Journal of Forensic Sciences, 2009, 54, 900-904.	1.6	49
29	Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 2016, 26, 67-82.	1.1	47
30	Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ, 2018, 6, e6030.	2.0	47
31	Microbial Community Analysis of Human Decomposition on Soil. , 2009, , 379-394.		46
32	Reforesting degraded agricultural landscapes with Eucalypts: Effects on carbon storage and soil fertility after 26years. Agriculture, Ecosystems and Environment, 2012, 163, 3-13.	5.3	45
33	Human Versus Animal: Contrasting Decomposition Dynamics of Mammalian Analogues in Experimental Taphonomy. Journal of Forensic Sciences, 2013, 58, 583-591.	1.6	45
34	Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. Functional Plant Biology, 2006, 33, 1091.	2.1	44
35	Mushrooms and taphonomy: the fungi that mark woodland graves. The Mycologist, 2003, 17, 20-24.	0.4	43
36	Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena, 2019, 180, 401-415.	5.0	43

#	Article	IF	CITATIONS
37	Using Ninhydrin to Detect Gravesoil. Journal of Forensic Sciences, 2008, 53, 397-400.	1.6	42
38	Putting the P in Ptilotus: a phosphorus-accumulating herb native to Australia. Annals of Botany, 2009, 103, 901-911.	2.9	42
39	Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain. Environmental Pollution, 2010, 158, 135-141.	7.5	42
40	Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2018, 155, 281-292.	4.2	42
41	Temperature regulation of extracellular proteases in ectomycorrhizal fungi (Hebeloma spp.) grown in axenic culture. Mycological Research, 1999, 103, 707-714.	2.5	41
42	Seedling response to phosphate addition and inoculation with arbuscular mycorrhizas and the implications for old-field restoration in Western Australia. Environmental and Experimental Botany, 2007, 61, 58-65.	4.2	41
43	Cadaver Decomposition and Soil. , 2008, , 29-51.		41
44	Transfer of cadmium and zinc from sewage sludge amended soil through a plant–aphid system to newly emerged adult ladybirds (Coccinella septempunctata). Agriculture, Ecosystems and Environment, 2003, 99, 171-178.	5.3	40
45	Freezing skeletal muscle tissue does not affect its decomposition in soil: Evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples. Forensic Science International, 2009, 183, 6-13.	2.2	40
46	Forest Humus Type Governs Heavy Metal Accumulation in Specific Organic Matter Fractions. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	40
47	Commensalism in an agroecosystem: hydraulic redistribution by deepâ€rooted legumes improves survival of a droughted shallowâ€rooted legume companion. Physiologia Plantarum, 2013, 149, 79-90.	5.2	39
48	Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters. Horticulture Research, 2020, 7, 71.	6.3	39
49	Re-creation of heathland on improved pasture using top soil removal and sulphur amendments: Edaphic drivers and impacts on ericoid mycorrhizas. Biological Conservation, 2008, 141, 1628-1635.	4.1	37
50	A novel plant–fungus symbiosis benefits the host without forming mycorrhizal structures. New Phytologist, 2014, 201, 1413-1422.	7.3	37
51	Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany, 2020, 171, 103925.	4.2	37
52	Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream. Biology and Fertility of Soils, 2006, 42, 186-197.	4.3	34
53	Contrasting responses to drought stress in herbaceous perennial legumes. Plant and Soil, 2011, 348, 299-314.	3.7	34
54	The â€~known' genetic potential for microbial communities to degrade organic phosphorus is reduced in lowâ€pH soils. MicrobiologyOpen, 2017, 6, e00474.	3.0	34

#	Article	IF	CITATIONS
55	Nitrogen dynamics under Lolium perenne after a single application of three different sewage sludge types from the same treatment stream. Bioresource Technology, 2004, 91, 233-241.	9.6	33
56	Differential Uptake, Partitioning and Transfer of Cd and Zn in the Soilâ^'Pea Plantâ^'Aphid System. Environmental Science & Technology, 2008, 42, 450-455.	10.0	33
57	Correlation between soil development and native plant growth in forest restoration after surface mining. Ecological Engineering, 2017, 106, 209-218.	3.6	32
58	Ectomycorrhizal Fungal Communities and Their Functional Traits Mediate Plant–Soil Interactions in Trace Element Contaminated Soils. Frontiers in Plant Science, 2018, 9, 1682.	3.6	31
59	Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition?. Applied Soil Ecology, 2008, 40, 529-535.	4.3	30
60	Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system. Australian Journal of Botany, 2012, 60, 661.	0.6	30
61	Ecto- and arbuscular mycorrhizal symbiosis can induce tolerance to toxic pulses of phosphorus in jarrah (Eucalyptus marginata) seedlings. Mycorrhiza, 2014, 24, 501-509.	2.8	30
62	Physiological and morphological adaptations of herbaceous perennial legumes allow differential access to sources of varyingly soluble phosphate. Physiologia Plantarum, 2015, 154, 511-525.	5.2	30
63	Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Scientific Reports, 2017, 7, 2179.	3.3	30
64	Induction of cold active acid phosphomonoesterase activity at low temperature in psychrotrophic ectomycorrhizal Hebeloma spp Mycological Research, 1998, 102, 1533-1539.	2.5	29
65	A Laboratory Incubation Method for Determining the Rate of Microbiological Degradation of Skeletal Muscle Tissue in Soil. Journal of Forensic Sciences, 2004, 49, 1-6.	1.6	29
66	Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability, 2018, 10, 4416.	3.2	28
67	The transfer of trace metals in the soil-plant-arthropod system. Science of the Total Environment, 2021, 779, 146260.	8.0	27
68	Sampling and analyzing metals in soils for archaeological prospection: A critique. Geoarchaeology - an International Journal, 2004, 19, 731-751.	1.5	25
69	Soil carbon and litter development along a reconstructed biodiverse forest chronosequence of South-Western Australia. Biogeochemistry, 2010, 101, 197-209.	3.5	25
70	OzFACE: the Australian savanna free air CO2 enrichment facility and its relevance to carbon-cycling issues in a tropical savanna. Australian Journal of Botany, 2005, 53, 677.	0.6	24
71	Perennial legumes native to Australia — a preliminary investigation of nutritive value and response to cutting. Australian Journal of Experimental Agriculture, 2007, 47, 170.	1.0	24
72	Phosphorus dynamics in a tropical forest soil restored after strip mining. Plant and Soil, 2018, 427, 105-123.	3.7	24

#	Article	lF	CITATIONS
73	Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicology and Environmental Safety, 2020, 202, 110917.	6.0	24
74	Are Ericoid Mycorrhizas a Factor in the Success of Calluna vulgaris Heathland Restoration?. Restoration Ecology, 2006, 14, 187-195.	2.9	23
75	Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate?. Plant and Soil, 2013, 373, 699-710.	3.7	23
76	Phosphorus fertilisation and large legume species affect jarrah forest restoration after bauxite mining. Forest Ecology and Management, 2015, 354, 10-17.	3.2	23
77	Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil, 2016, 2, 487-498.	4.9	23
78	Contrasting behaviour of cadmium and zinc in a soil–plant–arthropod system. Chemosphere, 2006, 64, 1115-1121.	8.2	20
79	Just Add Water and Salt: the Optimisation of Petrogenic Hydrocarbon Biodegradation in Soils from Semi-arid Barrow Island, Western Australia. Water, Air, and Soil Pollution, 2011, 216, 513-525.	2.4	20
80	Geotechnical systems that evolve with ecological processes. Environmental Earth Sciences, 2015, 73, 1067-1082.	2.7	20
81	Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 2019, 196, 235-246.	3.2	20
82	Large-scale mine site restoration of Australian eucalypt forests after bauxite mining: soil management and ecosystem development. , 2010, , 309-326.		19
83	Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Microbiological Research, 2002, 157, 221-231.	5.3	18
84	Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. PeerJ, 2018, 6, e4478.	2.0	18
85	Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. Soil Biology and Biochemistry, 2016, 93, 119-130.	8.8	17
86	Soil Fungi Associated with Graves and Latrines. , 2008, , 67-107.		17
87	The diversity of arbuscular mycorrhizas of selected AustralianFabaceae. Plant Biosystems, 2008, 142, 420-427.	1.6	16
88	Are Sulfurous Soil Amendments (S0, Fe(II)SO4, Fe(III)SO4) an Effective Tool in the Restoration of Heathland and Acidic Grassland after Four Decades of Rock Phosphate Fertilization?. Restoration Ecology, 2005, 13, 83-91.	2.9	15
89	Soil phosphorus supply affects nodulation and N:P ratio in 11 perennial legume seedlings. Crop and Pasture Science, 2011, 62, 992.	1.5	15
90	Interacting controls on innate sources of CO2 efflux from a calcareous arid zone soil under experimental acidification and wetting. Journal of Arid Environments, 2015, 122, 117-123.	2.4	15

#	Article	IF	CITATIONS
91	Enduring effects of large legumes and phosphorus fertiliser on jarrah forest restoration 15†years after bauxite mining. Forest Ecology and Management, 2019, 438, 204-214.	3.2	15
92	Helping stakeholders select and apply appraisal tools to mitigate soil threats: Researchers' experiences from across Europe. Journal of Environmental Management, 2020, 257, 110005.	7.8	14
93	Sensitivity of seedling growth to phosphorus supply in six tree species of the Australian Great Western Woodlands. Australian Journal of Botany, 2019, 67, 390.	0.6	14
94	Next generation restoration metrics: Using soil eDNA bacterial community data to measure trajectories towards rehabilitation targets. Journal of Environmental Management, 2022, 310, 114748.	7.8	14
95	Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza, 2016, 26, 401-415.	2.8	13
96	The where, when and what of phosphorus fertilisation for seedling establishment in a biodiverse jarrah forest restoration after bauxite mining in Western Australia. Ecological Engineering, 2020, 153, 105907.	3.6	13
97	Plant, soil and faunal responses to a contrived pH gradient. Plant and Soil, 2021, 462, 505-524.	3.7	13
98	Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in Metalliferous Gobi Desert Soils. Microbial Ecology, 2020, 79, 420-431.	2.8	12
99	Nutrient enrichment diminishes plant diversity and density, and alters long-term ecological trajectories, in a biodiverse forest restoration. Ecological Engineering, 2021, 165, 106222.	3.6	12
100	Decomposition Studies Using Animal Models in Contrasting Environments: Evidence from Temporal Changes in Soil Chemistry and Microbial Activity. , 2009, , 357-377.		12
101	Environmental Risks Assessment of Kaolin Mines and Their Brick Products Using Monte Carlo Simulations. Earth Systems and Environment, 2022, 6, 157-174.	6.2	12
102	A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil. Journal of Forensic Sciences, 2004, 49, 560-5.	1.6	12
103	Taphonomic mycota: fungi with forensic potential. Journal of Forensic Sciences, 2003, 48, 168-71.	1.6	11
104	Soil conditioning and plant-soil feedbacks in a modified forest ecosystem are soil-context dependent. Plant and Soil, 2015, 390, 183-194.	3.7	10
105	Long-term conditioning of soil by plantation eucalypts and pines does not affect growth of the native jarrah tree. Forest Ecology and Management, 2015, 338, 92-99.	3.2	10
106	Mycorrhizal symbiosis and phosphorus supply determine interactions among plants with contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2021, 109, 3892-3902.	4.0	10
107	Research in Forensic Taphonomy: A Soil-Based Perspective. , 2009, , 317-331.		10
108	Phosphate supply and arsenate toxicity in ectomycorrhizal fungi. Journal of Basic Microbiology, 2007, 47, 358-362.	3.3	9

#	Article	IF	CITATIONS
109	The development of soil organic matter in restored biodiverse Jarrah forests of South-Western Australia as determined by ASE and GCMS. Environmental Science and Pollution Research, 2011, 18, 1070-1078.	5.3	9
110	Poor regulation of phosphorus uptake and rhizosphere carboxylates in three phosphorus-hyperaccumulating species of Ptilotus. Plant and Soil, 2016, 402, 145-158.	3.7	9
111	Effects of aphid infestation on Cd and Zn concentration in wheat. Agriculture, Ecosystems and Environment, 2005, 109, 175-178.	5.3	8
112	Changes in sewage sludge carbon forms along a treatment stream. Chemosphere, 2008, 72, 981-985.	8.2	8
113	Rethinking soil water repellency and its management. Plant Ecology, 2019, 220, 977-984.	1.6	8
114	The Role of Arbuscular Mycorrhizas in Organic Farming. , 2009, , 189-229.		7
115	Rhizosphere 3: where plants meet soils down-under. Plant and Soil, 2012, 358, 1-5.	3.7	7
116	Too much of a good thing: phosphorus over-fertilisation in rehabilitated landscapes of high biodiversity value. , 2019, , .		7
117	Mine Closure and Ecosystem Development âŽ ⁻ Alcan Gove Bauxite Mine, Northern Territory, Australia. , 2006, , .		7
118	Comparative growth of ectomycorrhizal basidiomycetes (Hebeloma spp.) on organic and inorganic nitrogen. Journal of Basic Microbiology, 2000, 40, 393-395.	3.3	6
119	An Assessment of the Impact of Trees upon Archaeology Within a Relict Wetland. Journal of Archaeological Science, 2001, 28, 1069-1084.	2.4	6
120	Heathland Restoration on Former Agricultural Land: Effects of Artificial Acidification on the Availability and Uptake of Toxic Metal Cations. Water, Air, and Soil Pollution, 2007, 178, 287-295.	2.4	6
121	Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms. Ecology and Evolution, 2018, 8, 8652-8664.	1.9	6
122	Phosphorus Fertiliser Placement and Seedling Success in Australian Jarrah Forest. , 2006, , .		6
123	Cover crop residue diversity enhances microbial activity and biomass with additive effects on microbial structure. Soil Research, 2022, 60, 349-359.	1.1	6
124	Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species. Plant and Soil, 2022, 472, 577-594.	3.7	6
125	Applying cover crop residues as diverse mixtures increases initial microbial assimilation of crop residueâ€derived carbon. European Journal of Soil Science, 2022, 73,	3.9	6
126	Some potential inaccuracies of the p -nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Biology and Fertility of Soils, 2000, 31, 92-96.	4.3	5

#	Article	IF	CITATIONS
127	Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function. Environmental Pollution, 2011, 159, 2740-2749.	7.5	5
128	Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands. Mycorrhiza, 2015, 25, 41-54.	2.8	5
129	Pronounced surface stratification of soil phosphorus, potassium and sulfur under pastures upstream of a eutrophic wetland and estuarine system. Soil Research, 2017, 55, 657.	1.1	5
130	Evaluating Heathland Restoration Belowground Using Different Quality Indices of Soil Chemical and Biological Properties. Agronomy, 2020, 10, 1140.	3.0	5
131	Applied phosphorus has long-term impacts on vegetation responses in restored jarrah forest. , 2019, , .		4
132	Restoring Jarrah Forest after Bauxite Mining in Western Australia — The Effect of Fertilizer on Floristic Diversity and Composition. , 2008, , .		4
133	Amenity grassland quality following anaerobic digestate application. Grassland Science, 2018, 64, 185-189.	1.1	3
134	The benefits of fertiliser application on tree growth are transient in restored jarrah forest. Trees, Forests and People, 2021, 5, 100112.	1.9	3
135	Natural attenuation of legacy hydrocarbon spills in pristine soils is feasible despite difficult environmental conditions in the monsoon tropics. Science of the Total Environment, 2021, 799, 149335.	8.0	3
136	Alleviating arsenic toxicity to plants in a simulated cover system with phosphate placement in topsoil and subsoil. , 2016, , .		3
137	Soil <scp>DNA</scp> chronosequence analysis shows bacterial community reâ€assembly following postâ€mining forest rehabilitation. Restoration Ecology, 2023, 31, .	2.9	3
138	Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist, 2022, 235, 2046-2053.	7.3	3
139	Can Temperature Affect the Release of Ninhydrin-Reactive Nitrogen in Gravesoil Following the Burial of a Mammalian (Rattus rattus) Cadaver?. , 2009, , 333-340.		2
140	Optimising soil physical properties for rehabilitation of mined land – effects of tine type on soil strength and root proliferation. , 2011, , .		2
141	Step up funding to halt forensic folly. Nature, 2013, 501, 33-33.	27.8	1
142	Advanced multivariate analysis to assess remediation of hydrocarbons in soils. Environmental Science and Pollution Research, 2014, 21, 11998-12005.	5.3	1
143	PRESENTATION AS A SERVICE TO THE RETAILER. Retail and Distribution Management, 1980, 8, 67-68.	0.1	0
144	Cadmium stress causes differential effects on growth and the secretion of carbon-degrading enzymes in four mycorrhizal basidiomycetes. Mycoscience, 2021, 62, 132-136.	0.8	0

#	Article	IF	CITATIONS
145	Enduring legacy of coal mining on the fungal community in a High Arctic soil after five decades. Pedosphere, 2022, , .	4.0	0