
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7249141/publications.pdf Version: 2024-02-01

OSVALDO E SALA

#	Article	IF	CITATIONS
1	Ecological maturity and stability of nematode communities in response to precipitation manipulations in grasslands. Applied Soil Ecology, 2022, 170, 104263.	4.3	4
2	Precipitation effects on nematode diversity and carbon footprint across grasslands. Global Change Biology, 2022, 28, 2124-2132.	9.5	11
3	Woodyâ€plant encroachment: Precipitation, herbivory, and grassâ€competition interact to affect shrub recruitment. Ecological Applications, 2022, 32, e2536.	3.8	10
4	Open access is a misnomer. Frontiers in Ecology and the Environment, 2022, 20, 71-71.	4.0	1
5	Expanding the Pulse–Reserve Paradigm to Microorganisms on the Basis of Differential Reserve Management Strategies. BioScience, 2022, 72, 638-650.	4.9	3
6	Temporal Effects of Monsoon Rainfall Pulses on Plant Available Nitrogen in a Chihuahuan Desert Grassland. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	10
7	Precipitation versus temperature as phenology controls in drylands. Ecology, 2022, 103, .	3.2	17
8	Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03432.	2.2	4
9	Why Coordinated Distributed Experiments Should Go Global. BioScience, 2021, 71, 918-927.	4.9	12
10	Plant Species Richness in Multiyear Wet and Dry Periods in the Chihuahuan Desert. Climate, 2021, 9, 130.	2.8	8
11	Leveraging the anthropause. Frontiers in Ecology and the Environment, 2021, 19, 315-315.	4.0	1
12	Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biology and Biochemistry, 2020, 140, 107638.	8.8	28
13	Traversing the Wasteland: A Framework for Assessing Ecological Threats to Drylands. BioScience, 2020, 70, 35-47.	4.9	74
14	Sensitivity of primary production to precipitation across the United States. Ecology Letters, 2020, 23, 527-536.	6.4	109
15	Ecto- and endoparasitic nematodes respond differently across sites to changes in precipitation. Oecologia, 2020, 193, 761-771.	2.0	14
16	Root herbivory controls the effects of water availability on the partitioning between above―and belowâ€ground grass biomass. Functional Ecology, 2020, 34, 2403-2410.	3.6	17
17	Global patterns and climatic controls of belowground net carbon fixation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20038-20043.	7.1	61
18	Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets. Scientific Reports, 2020, 10, 8112.	3.3	31

#	Article	IF	CITATIONS
19	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
20	The sustainability publication gap and its implications. Current Opinion in Environmental Sustainability, 2019, 39, 39-43.	6.3	1
21	A Concept Map of Evolutionary Biology to Promote Meaningful Learning in Biology. American Biology Teacher, 2019, 81, 79-87.	0.2	10
22	Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12883-12888.	7.1	57
23	Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6891-6896.	7.1	151
24	Foundations and Frontiers of Ecosystem Science: Legacy of a Classic Paper (Odum 1969). Ecosystems, 2019, 22, 1160-1172.	3.4	13
25	Effect of interannual precipitation variability on dryland productivity: A global synthesis. Global Change Biology, 2019, 25, 269-276.	9.5	126
26	Regional grassland productivity responses to precipitation during multiyear above―and belowâ€average rainfall periods. Global Change Biology, 2018, 24, 1935-1951.	9.5	71
27	Groundwater recharge in desert playas: current rates and future effects of climate change. Environmental Research Letters, 2018, 13, 014025.	5.2	30
28	An Integrated View of Complex Landscapes: A Big Data-Model Integration Approach to Transdisciplinary Science. BioScience, 2018, 68, 653-669.	4.9	38
29	The Interactive Role of Wind and Water in Functioning of Drylands: What Does the Future Hold?. BioScience, 2018, 68, 670-677.	4.9	42
30	Playaâ€Wetlands Effects on Dryland Biogeochemistry: Space and Time Interactions. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1879-1887.	3.0	3
31	Nematode exclusion and recovery in experimental soil microcosms. Soil Biology and Biochemistry, 2017, 108, 78-83.	8.8	17
32	Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 2017, 20, 1534-1545.	6.4	136
33	Globalâ€change drivers of ecosystem functioning modulated by natural variability and saturating responses. Global Change Biology, 2017, 23, 503-511.	9.5	25
34	Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 2017, 23, 1774-1782.	9.5	132
35	Rangeland Ecosystem Services: Nature's Supply and Humans' Demand. Springer Series on Environmental Management, 2017, , 467-489.	0.3	43
36	Few multiyear precipitation–reduction experiments find aÂshift in the productivity–precipitation relationship. Global Change Biology, 2016, 22, 2570-2581.	9.5	105

#	Article	IF	CITATIONS
37	Biophysical controls over concentration and depth distribution of soil organic carbon and nitrogen in desert playas. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3019-3029.	3.0	12
38	Peer review report 1 on "Drought manipulation and its direct and legacy effects on productivity of a monodominant and mixed-species semi-arid grassland― Agricultural and Forest Meteorology, 2016, 217, 250.	4.8	0
39	How Scientists Can Help End the Land-Use Conflict. BioScience, 2016, 66, 915-915.	4.9	1
40	Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecology Letters, 2015, 18, 1293-1300.	6.4	109
41	Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Frontiers in Ecology and the Environment, 2015, 13, 44-51.	4.0	139
42	Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 2015, 21, 2624-2633.	9.5	233
43	Responses of a desert nematode community to changes in water availability. Ecosphere, 2015, 6, 1-15.	2.2	47
44	Legacy effects in linked ecological–soil–geomorphic systems of drylands. Frontiers in Ecology and the Environment, 2015, 13, 13-19.	4.0	92
45	Beyond desertification: new paradigms for dryland landscapes. Frontiers in Ecology and the Environment, 2015, 13, 4-12.	4.0	60
46	Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions. Climatic Change, 2015, 131, 213-227.	3.6	62
47	Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the United States of America, 2015, 112, 12735-12740.	7.1	212
48	Effect of woody-plant encroachment on livestock production in North and South America. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12948-12953.	7.1	145
49	Grasses have larger response than shrubs to increased nitrogen availability: A fertilization experiment in the Patagonian steppe. Journal of Arid Environments, 2014, 102, 17-20.	2.4	18
50	Interactions among resource partitioning, sampling effect, and facilitation on the biodiversity effect: a modeling approach. Oecologia, 2014, 174, 559-566.	2.0	11
51	Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem. Functional Ecology, 2014, 28, 1292-1298.	3.6	54
52	Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical <scp>A</scp> mericas. Journal of Ecology, 2014, 102, 1363-1373.	4.0	107
53	Grass–woodland transitions: determinants and consequences for ecosystem functioning and provisioning of services. Journal of Ecology, 2014, 102, 1357-1362.	4.0	77
54	Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a crossâ€site study. Global Change Biology, 2014, 20, 2631-2643.	9.5	75

#	Article	IF	CITATIONS
55	Land degradation and climate change: a sin of omission?. Frontiers in Ecology and the Environment, 2013, 11, 283-283.	4.0	18
56	Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe. Oecologia, 2013, 173, 1075-1081.	2.0	41
57	Precipitation legacies in desert grassland primary production occur through previousâ€year tiller density. Ecology, 2013, 94, 435-443.	3.2	169
58	Water controls on nitrogen transformations and stocks in an arid ecosystem. Ecosphere, 2013, 4, 1-17.	2.2	67
59	Automated rainfall manipulation system: a reliable and inexpensive tool for ecologists. Ecosphere, 2013, 4, 1-10.	2.2	49
60	Effects of plant species traits on ecosystem processes: experiments in the Patagonian steppe. Ecology, 2012, 93, 227-234.	3.2	15
61	Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3135-3144.	4.0	471
62	Managed Relocation: Integrating the Scientific, Regulatory, and Ethical Challenges. BioScience, 2012, 62, 732-743.	4.9	212
63	Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert Grassland. Oecologia, 2012, 169, 373-383.	2.0	79
64	Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Global Change Biology, 2012, 18, 151-163.	9.5	140
65	Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentina. Forest Ecology and Management, 2011, 262, 1360-1369.	3.2	62
66	Size of Precipitation Pulses Controls Nitrogen Transformation and Losses in an Arid Patagonian Ecosystems, 2010, 13, 575-585.	3.4	77
67	The Origins of C ₄ Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	12.6	899
68	Now is the Time for Action: Transitions and Tipping Points in Complex Environmental Systems. Environment, 2010, 52, 38-45.	1.4	20
69	Sheep Grazing Decreases Organic Carbon and Nitrogen Pools in the Patagonian Steppe: Combination of Direct and Indirect Effects. Ecosystems, 2009, 12, 686-697.	3.4	98
70	Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, Argentina. Global Change Biology, 2009, 15, 2493-2502.	9.5	19
71	Ecological consequences of a massive flowering event of bamboo (<i>Chusquea culeou</i>) in a temperate forest of Patagonia, Argentina. Journal of Vegetation Science, 2009, 20, 424-432.	2.2	46
72	Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9721-9724.	7.1	339

#	Article	IF	CITATIONS
73	Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densities. Grassland Science, 2008, 54, 9-16.	1.1	10
74	Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6087-6090.	7.1	123
75	Climate Change Impacts on South American Rangelands. Rangelands, 2008, 30, 34-39.	1.9	21
76	Cascading events in linked ecological and socioeconomic systems. Frontiers in Ecology and the Environment, 2007, 5, 221-224.	4.0	42
77	Bridging historical and ecological approaches in biogeography. Australian Systematic Botany, 2006, 19, 1.	0.9	35
78	HABITAT LOSS, TROPHIC COLLAPSE, AND THE DECLINE OF ECOSYSTEM SERVICES. Ecology, 2006, 87, 1915-1924.	3.2	458
79	Differential Controls of Water Input on Litter Decomposition and Nitrogen Dynamics in the Patagonian Steppe. Ecosystems, 2006, 9, 128-141.	3.4	137
80	Inhibition of Nitrification Alters Carbon Turnover in the Patagonian Steppe. Ecosystems, 2006, 9, 1257-1265.	3.4	43
81	VEGETATION STRUCTURE CONSTRAINS PRIMARY PRODUCTION RESPONSE TO WATER AVAILABILITY IN THE PATAGONIAN STEPPE. Ecology, 2006, 87, 952-962.	3.2	213
82	Determinants of Biodiversity Change: Ecological Tools for Building Scenarios1. Ecology, 2006, 87, 1875-1876.	3.2	5
83	VEGETATION STRUCTURE CONSTRAINS PRIMARY PRODUCTION RESPONSE TO WATER AVAILABILITY IN THE PATAGONIAN STEPPE. , 2006, 87, 952.		1
84	Direct and indirect effects of solar ultraviolet-B radiation on long-term decomposition. Global Change Biology, 2005, 11, 051006062331002-???.	9.5	22
85	Are Existing Global Scenarios Consistent with Ecological Feedbacks?. Ecosystems, 2005, 8, 143-152.	3.4	40
86	Aggregate measures of ecosystem services: can we take the pulse of nature?. Frontiers in Ecology and the Environment, 2005, 3, 56-59.	4.0	34
87	Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology, 2004, 41, 653-663.	4.0	145
88	Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429, 651-654.	27.8	968
89	Growth responses to ultraviolet-B radiation of two Carex species dominating an Argentinian fen ecosystem. Basic and Applied Ecology, 2004, 5, 153-162.	2.7	10
90	Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 2004, 141, 211-220.	2.0	772

6

OSVALDO E SALA

#	Article	IF	CITATIONS
91	Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community. Oecologia, 2004, 140, 480-490.	2.0	36
92	Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 2004, 141, 191-193.	2.0	309
93	Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Global Change Biology, 2003, 9, 1465-1474.	9.5	99
94	Six years of solar UVâ€8 manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist, 2003, 160, 379-389.	7.3	91
95	Controls on nitrification in a water-limited ecosystem: experimental inhibition of ammonia-oxidising bacteria in the Patagonian steppe. Soil Biology and Biochemistry, 2003, 35, 1609-1613.	8.8	22
96	PATTERNS AND CONTROLS OF PRIMARY PRODUCTION IN THE PATAGONIAN STEPPE: A REMOTE SENSING APPROACH*. Ecology, 2002, 83, 307-319.	3.2	198
97	A rainout shelter design for intercepting different amounts of rainfall. Oecologia, 2002, 133, 95-101.	2.0	328
98	Granivory rates by rodents, insects, and birds at different microsites in the Patagonian steppe. Ecography, 2002, 25, 417-427.	4.5	22
99	Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. Journal of Vegetation Science, 2002, 13, 351-360.	2.2	132
100	Ecological Forecasts: An Emerging Imperative. Science, 2001, 293, 657-660.	12.6	774
101	Current Distribution of Ecosystem Functional Types in Temperate South America. Ecosystems, 2001, 4, 683-698.	3.4	135
102	Responses to solar ultraviolet-B radiation in a shrub-dominated natural ecosystem of Tierra del Fuego (southern Argentina). Global Change Biology, 2001, 7, 467-478.	9.5	61
103	Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern) Tj ETQq1 1 0.7843	814 rgBT / 3.8	Overlock 10 140
104	Interâ€annual variation in primary production of a semiâ€arid grassland related to previousâ€year production. Journal of Vegetation Science, 2001, 12, 137-142.	2.2	163
105	Price put on biodiversity. Nature, 2001, 412, 34-36.	27.8	37
106	Consequences of changing biodiversity. Nature, 2000, 405, 234-242.	27.8	3,209
107	Effects of Global Changes on Above- and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning. BioScience, 2000, 50, 1089.	4.9	165

108 Methods of Estimating Aboveground Net Primary Productivity. , 2000, , 31-43.

92

#	Article	IF	CITATIONS
109	Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient. Ecosystems, 1999, 2, 64-68.	3.4	264
110	Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution, 1999, 14, 273-277.	8.7	579
111	Ecosystem Consequences of Changing Biodiversity. BioScience, 1998, 48, 45-52.	4.9	319
112	FUNCTIONAL AND STRUCTURAL CONVERGENCE OF TEMPERATE GRASSLAND AND SHRUBLAND ECOSYSTEMS. , 1998, 8, 194-206.		131
113	SEED DISTRIBUTION CONSTRAINS THE DYNAMICS OF THE PATAGONIAN STEPPE. Ecology, 1997, 78, 93-100.	3.2	150
114	Biotic Control over the Functioning of Ecosystems. Science, 1997, 277, 500-504.	12.6	948
115	Ecosystem responses to changes in plant functional type composition: An example from the Patagonian steppe. Journal of Vegetation Science, 1996, 7, 381-390.	2.2	146
116	Water Losses in the Patagonian Steppe: A Modelling Approach. Ecology, 1995, 76, 510-520.	3.2	115
117	Patch structure and dynamics in a Patagonian arid steppe. Plant Ecology, 1994, 111, 127-135.	1.2	101
118	Competition, Facilitation, Seed Distribution and the Origin of Patches in a Patagonian Steppe. Oikos, 1994, 70, 26.	2.7	189
119	Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science, 1993, 4, 839-846.	2.2	87
120	Achieving a sustainable biosphere: An international endeavour. Trends in Ecology and Evolution, 1992, 7, 324-326.	8.7	6
121	Effects of grazing on seedling establishment: the role of seed and safe-site availability. Journal of Vegetation Science, 1990, 1, 353-358.	2.2	96
122	Seedling responses to soil moisture amount versus pulse frequency in a successfully encroaching semi-arid shrub. Oecologia, 0, , .	2.0	2