
Peifa Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/724865/publications.pdf Version: 2024-02-01

Δειέλ \λ/ει

#	Article	IF	CITATIONS
1	Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chemical Society Reviews, 2015, 44, 815-832.	38.1	504
2	Responsive Supramolecular Polymer Metallogel Constructed by Orthogonal Coordination-Driven Self-Assembly and Host/Guest Interactions. Journal of the American Chemical Society, 2014, 136, 4460-4463.	13.7	265
3	Multiple yet Controllable Photoswitching in a Single AIEgen System. Journal of the American Chemical Society, 2018, 140, 1966-1975.	13.7	209
4	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.	14.6	193
5	A Novel Diblock Copolymer with a Supramolecular Polymer Block and a Traditional Polymer Block: Preparation, Controllable Selfâ€Assembly in Water, and Application in Controlled Release. Advanced Materials, 2013, 25, 5725-5729.	21.0	159
6	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 9293-9298.	13.8	105
7	A Discrete Amphiphilic Organoplatinum(II) Metallacycle with Tunable Lower Critical Solution Temperature Behavior. Journal of the American Chemical Society, 2014, 136, 15497-15500.	13.7	101
8	Cyclization-Promoted Ultralong Low-Temperature Phosphorescence via Boosting Intersystem Crossing. Journal of the American Chemical Society, 2021, 143, 2164-2169.	13.7	82
9	Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano, 2019, 13, 839-846.	14.6	77
10	"Living―luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. Materials Horizons, 2020, 7, 1566-1572.	12.2	71
11	Novel [2]rotaxanes based on the recognition of pillar[5]arenes to an alkane functionalized with triazole moieties. Tetrahedron, 2012, 68, 9179-9185.	1.9	68
12	A dynamic [1]catenane with pH-responsiveness formed via threading-followed-by-complexation. Chemical Communications, 2013, 49, 2512.	4.1	68
13	Biologically Excretable Aggregationâ€Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine. Advanced Materials, 2021, 33, e2008123.	21.0	63
14	pH-responsive assembly and disassembly of a supramolecular cryptand-based pseudorotaxane driven by I€â€"΀ stacking interaction. Chemical Communications, 2011, 47, 9840.	4.1	56
15	An anthracene-appended 2:3 copillar[5]arene: synthesis, computational studies, and application in highly selective fluorescence sensing for Fe(<scp>iii</scp>) ions. Chemical Communications, 2015, 51, 15169-15172.	4.1	54
16	Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. ACS Nano, 2020, 14, 4265-4275.	14.6	53
17	[2]Pseudorotaxanes Based on the Recognition of Cryptands to Vinylogous Viologens. Organic Letters, 2011, 13, 6370-6373.	4.6	51
18	Cyclo[4]carbazole, an Iodide Anion Macrocyclic Receptor. Organic Letters, 2016, 18, 5054-5057.	4.6	47

PEIFA WEI

#	Article	IF	CITATIONS
19	Supramolecular Copolymer Constructed by Hierarchical Self-Assembly of Orthogonal Host–Guest, H-Bonding, and Coordination Interactions. ACS Macro Letters, 2016, 5, 671-675.	4.8	46
20	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	6.7	46
21	Pseudorotaxanes from self-assembly of two crown ether-based cryptands and a 1,2-bis(pyridinium) ethane derivative. Chemical Communications, 2012, 48, 4968.	4.1	41
22	Two 2 : 3 copillar[5]arene constitutional isomers: syntheses, crystal structures and host–guest complexation of their derivatives with dicarboxylic acid sodium salts in water. Chemical Communications, 2013, 49, 1070.	4.1	40
23	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40
24	A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution. Chemical Communications, 2016, 52, 513-516.	4.1	36
25	A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host–guest interaction. Chemical Communications, 2014, 50, 3973-3975.	4.1	32
26	An ideal platform of light-emitting materials from phenothiazine: facile preparation, tunable red/NIR fluorescence, bent geometry-promoted AIE behaviour and selective lipid-droplet (LD) tracking ability. Journal of Materials Chemistry C, 2019, 7, 4185-4190.	5.5	32
27	Reversible formation of a poly[3]rotaxane based on photo dimerization of an anthracene-capped [3]rotaxane. Chemical Communications, 2014, 50, 14105-14108.	4.1	31
28	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie - International Edition, 2021, 60, 7148-7154.	13.8	28
29	Positive/Negative Phototropism: Controllable Molecular Actuators with Different Bending Behavior. CCS Chemistry, 2021, 3, 1491-1500.	7.8	27
30	Metallosupramolecular Poly[2]pseudorotaxane Constructed by Metal Coordination and Crown-Ether-Based Molecular Recognition. Organic Letters, 2014, 16, 126-129.	4.6	26
31	Amphiphilic pillar[5]arenes: influence of chemical structure on self-assembly morphology and application in gas response and λ-DNA condensation. RSC Advances, 2014, 4, 6042.	3.6	26
32	Benzo-21-crown-7-Based [1]Rotaxanes: Syntheses, X-ray Crystal Structures, and Dynamic Characteristics. Organic Letters, 2013, 15, 5350-5353.	4.6	25
33	Supramolecular Side-Chain Poly[2]pseudorotaxanes Formed by Orthogonal Coordination-Driven Self-Assembly and Crown-Ether-Based Host–Guest Interactions. Organic Letters, 2014, 16, 2850-2853.	4.6	21
34	A chemical-responsive bis(m-phenylene)-32-crown-10/2,7-diazapyrenium salt [2]pseudorotaxane. Chemical Communications, 2012, 48, 8201.	4.1	20
35	[2]Pseudorotaxaneâ€Based Supramolecular Optical Indicator for the Visual Detection of Cellular Cyanide Excretion. Chemistry - A European Journal, 2019, 25, 14447-14453.	3.3	19
36	[<i>n</i>]Pseudorotaxanes (<i>n</i> = 2, 3) from Selfâ€Assembly of Two Cryptands and a 1,2â€Bis(4â€pyridinium)ethane Derivative. European Journal of Organic Chemistry, 2012, 2012, 6351-6356.	2.4	18

Peifa Wei

#	Article	IF	CITATIONS
37	Three Protocols for the Formation of a [3]Pseudorotaxane via Orthogonal Cryptand-Based Host–Guest Recognition and Coordination-Driven Self-Assembly. Organic Letters, 2013, 15, 4984-4987.	4.6	18
38	Responsive cross-linked supramolecular polymer network: hierarchical supramolecular polymerization driven by cryptand-based molecular recognition and metal coordination. Polymer Chemistry, 2014, 5, 3972-3976.	3.9	17
39	Taco complex-templated highly regio- and stereo-selective photodimerization of a coumarin-containing crown ether. Chemical Communications, 2017, 53, 1688-1691.	4.1	17
40	Taco complex-templated dynamic clipping to cryptand-based [2]rotaxane- and [2]catenane-type mechanically interlocked structures. RSC Advances, 2013, 3, 21289.	3.6	15
41	Chemically-Responsive Complexation of A Diquaternary Salt with Bis(<i>m</i> -phenylene)-32-Crown-10 Derivatives and Host Substituent Effect on Complexation Geometry. Organic Letters, 2013, 15, 534-537.	4.6	15
42	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie, 2020, 132, 9379-9384.	2.0	14
43	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	3.2	5
44	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie, 2021, 133, 7224-7230.	2.0	4
45	Facile Synthesis of Functional Processable Fluoropolydienes by Alkyne-Based Multicomponent Polycouplings. Macromolecules, 2020, 53, 9859-9868.	4.8	4
46	Two bis(p-phenylene)-34-crown-10-based cryptand constitutional isomers: different binding abilities induced by structural alterations. Tetrahedron Letters, 2014, 55, 5825-5828.	1.4	3
47	[n]Pseudorotaxanes constructed by a bis(p-phenylene)-34-crown-10-based cryptand: different binding behaviors induced by minor structural changes of guests. RSC Advances, 2015, 5, 38906-38909.	3.6	3