Costas Emmanuel Synolakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7248016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field survey of the 30 October 2020 Samos (Aegean Sea) tsunami in the Greek islands. Bulletin of Earthquake Engineering, 2022, 20, 7873-7905.	4.1	12
2	Palaeo-Tsunami Events on the Coasts of Cyprus. Geosciences (Switzerland), 2022, 12, 58.	2.2	4
3	The <i>M</i> w = 6.6 earthquake and tsunami of south Crete on 2020 May 2. Geophysical Journal International, 2022, 230, 480-506.	2.4	6
4	Anatomy of strike-slip fault tsunami genesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
5	Wave overtopping due to harbour resonance. Coastal Engineering, 2021, 169, 103973.	4.0	9
6	Coastal Boulders on the SE Coasts of Cyprus as Evidence of Palaeo-Tsunami Events. Journal of Marine Science and Engineering, 2020, 8, 812.	2.6	10
7	Field Survey and Numerical Modelling of the December 22, 2018 Anak Krakatau Tsunami. Pure and Applied Geophysics, 2020, 177, 2457-2475.	1.9	31
8	The Chios, Greece Earthquake of 23 July 1949: Seismological Reassessment and Tsunami Investigations. Pure and Applied Geophysics, 2020, 177, 1295-1313.	1.9	8
9	Temporal and Topographic Source Effects on Tsunami Generation. Journal of Geophysical Research: Oceans, 2019, 124, 5270-5288.	2.6	8
10	The 20th July 2017 Bodrum–Kos Tsunami Field Survey. Pure and Applied Geophysics, 2019, 176, 2925-2949.	1.9	28
11	Numerical modeling of tsunamis and tsunami vulnerability analysis for Heraklion, Crete. Mathematical Methods in the Applied Sciences, 2018, 41, 1068-1073.	2.3	2
12	Temporal and Spatial Evolution of Potential Energy, Kinetic Energy, and Momentum Flux in Tsunami Waves during Breaking and Inundation. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, 04017018.	1.2	2
13	Twenty Challenges in Incident Planning. Journal of Homeland Security and Emergency Management, 2017, 14, .	0.5	3
14	Development of MOST for Real-Time Tsunami Forecasting. Journal of Waterway, Port, Coastal and Ocean Engineering, 2016, 142, .	1.2	58
15	Lagrangian flow measurements and observations of the 2015 Chilean tsunami in Ventura, CA. Geophysical Research Letters, 2016, 43, 5217-5224.	4.0	12
16	Sequencing of tsunami waves: why the first wave is not always the largest. Geophysical Journal International, 2016, 204, 719-735.	2.4	27
17	Tsunamis: bridging science, engineering and society. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140369.	3.4	47
18	A STUDY OF WAVE AMPLIFICATION IN THE VENETIAN HARBOR OF CHANIA, CRETE. Coastal Engineering Proceedings, 2015, 1, 59.	0.1	3

#	Article	IF	CITATIONS
19	The Fukushima accident was preventable. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140379.	3.4	46
20	Tsunami Dynamics, Forecasting, and Mitigation. , 2015, , 15-57.		6
21	Tsunami Generation Above a Sill. Pure and Applied Geophysics, 2015, 172, 985-1002.	1.9	6
22	Late Holocene uplift of Rhodes, Greece: evidence for a large tsunamigenic earthquake and the implications for the tectonics of the eastern Hellenic Trench System. Geophysical Journal International, 2015, 203, 459-474.	2.4	16
23	Palaeotsunamis and tsunami hazards in the Eastern Mediterranean. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140374.	3.4	28
24	Plausible megathrust tsunamis in the eastern Mediterranean Sea. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2014, 167, 99-105.	0.4	8
25	Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Applied Numerical Mathematics, 2013, 67, 111-125.	2.1	22
26	Focusing of long waves with finite crest over constant depth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130015.	2.1	26
27	Heavy Metal Distribution in Opportunistic Beach Nourishment: A Case Study in Greece. Scientific World Journal, The, 2013, 2013, 1-5.	2.1	13
28	The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophysical Research Letters, 2012, 39, .	4.0	199
29	The 2010 M _w 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and nearâ€field GPS data. Journal of Geophysical Research, 2012, 117, .	3.3	130
30	Coastal Resilience: Can We Get Beyond Planning the Last Disaster?. , 2011, , .		10
31	Observations and Modeling of the 27 February 2010 Tsunami in Chile. , 2011, , .		0
32	The Great Cretan Splash Up-A Coastal Disaster Preparedness Exercise in Greece. , 2011, , .		3
33	Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth-Science Reviews, 2011, 107, 66-75.	9.1	64
34	Reassessing the tsunami risk in major ports and harbors of California I: San Diego. Natural Hazards, 2011, 58, 479-496.	3.4	12
35	Tsunami Simulations for Regional Sources in the South China and Adjoining Seas. Pure and Applied Geophysics, 2011, 168, 1153-1173.	1.9	58
36	Sedimentary Deposits from the 17 July 2006 Western Java Tsunami, Indonesia: Use of Grain Size Analyses to Assess Tsunami Flow Depth, Speed, and Traction Carpet Characteristics. Pure and Applied Geophysics, 2011, 168, 1951-1961.	1.9	67

Costas Emmanuel Synolakis

#	Article	IF	CITATIONS
37	Field Survey of the 27 February 2010 Chile Tsunami. Pure and Applied Geophysics, 2011, 168, 1989-2010.	1.9	266
38	A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT). Pure and Applied Geophysics, 2011, 168, 2121-2131.	1.9	70
39	A Second Generation of Tsunami Inundation Maps for the State of California. Pure and Applied Geophysics, 2011, 168, 2133-2146.	1.9	15
40	A review of coastal community vulnerabilities toward resilience benefits from disaster reduction measures. Environmental Hazards, 2010, 9, 222-232.	2.5	12
41	Tsunami Catalogs for the Eastern Mediterranean, Revisited. Journal of Earthquake Engineering, 2010, 14, 309-330.	2.5	75
42	The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 2009, 178, 1533-1554.	2.4	112
43	Choking on carbon emissions from Greek academic paperwork. Nature, 2009, 461, 167-167.	27.8	3
44	New Maps of California to Improve Tsunami Preparedness. Eos, 2009, 90, 137-138.	0.1	7
45	TSUNAMI HYDRODYNAMIC MODELING: STANDARDS AND GUIDELINES. , 2009, , 127-145.		1
46	THE ROLE OF REGIONAL SEDIMENT MANAGEMENT IN COASTAL ZONE MANAGEMENT. , 2009, , .		1
47	Evaluating Tsunami Hazard in the Northwestern Indian Ocean. Pure and Applied Geophysics, 2008, 165, 2045-2058.	1.9	39
48	Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 2008, 172, 995-1015.	2.4	157
49	Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science, 2008, 35, 191-212.	2.4	171
50	Tsunami Inundation from Great Earthquakes on the Cascadia Subduction Zone along the Northern California Coast. , 2008, , .		0
51	BENCHMARK PROBLEMS. Series on Quality, Reliability and Engineering Statistics, 2008, , 223-230.	0.2	5
52	AMPLITUDE EVOLUTION AND RUNUP OF LONG WAVES: COMPARISON OF EXPERIMENTAL AND NUMERICAL DATA ON A 3D COMPLEX TOPOGRAPHY. Series on Quality, Reliability and Engineering Statistics, 2008, , 243-247.	0.2	4
53	The Plight of the Beaches of Crete. , 2008, , .		4

54 Evaluating Tsunami Hazard in the Northwestern Indian Ocean. , 2008, , 2045-2058.

#	Article	IF	CITATIONS
55	Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 2007, 34, .	4.0	120
56	Tsunami inundation at Crescent City, California generated by earthquakes along the Cascadia Subduction Zone. Geophysical Research Letters, 2007, 34, .	4.0	29
57	Earthquake-Induced Liquefaction around Marine Structures. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133, 55-82.	1.2	55
58	MODELING FAR-FIELD TSUNAMIS FOR CALIFORNIA PORTS AND HARBORS. , 2007, , .		0
59	2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophysical Research Letters, 2006, 33, .	4.0	134
60	Northern Sumatra Field Survey after the December 2004 Great Sumatra Earthquake and Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 93-104.	3.1	49
61	Oman Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 203-218.	3.1	85
62	Sri Lanka Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 155-172.	3.1	71
63	Maldives Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 137-154.	3.1	41
64	Tsunami: WAVE of CHANGE. Scientific American, 2006, 294, 56-63.	1.0	72
65	Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2231-2265.	3.4	230
66	Runup Measurements of the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 67-91.	3.1	75
67	Tsunami inundation modeling for western Sumatra. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19673-19677.	7.1	95
68	Initial Value Problem Solution of Nonlinear Shallow Water-Wave Equations. Physical Review Letters, 2006, 97, 148501.	7.8	83
69	GENERATION AND PROPAGATION OF TSUNAMIS TRIGGERED BY EARTHQUAKES AND LANDSLIDES: A THEORETICAL AND A SIMULATION VIEWPOINT. , 2006, , .		0
70	Could it Happen Here?. Civil Engineering, 2005, 75, 54-133.	0.1	17
71	India must cooperate on tsunami warning system. Nature, 2005, 434, 17-18.	27.8	25
72	Observations by the International Tsunami Survey Team in Sri Lanka. Science, 2005, 308, 1595-1595.	12.6	236

#	Article	IF	CITATIONS
73	Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 2005, 536, 107-144.	3.4	225
74	COASTAL HAZARD PREVENTION AND RESPONSE EVALUATION. , 2005, , .		1
75	The Regional Economic Cost of a Tsunami Wave Generated by a Submarine Landslide Off of Palos Verdes, California. , 2005, , 65-94.		Ο
76	The earthquake and tsunami of 1865 November 17: evidence for far-field tsunami hazard from Tonga. Geophysical Journal International, 2004, 157, 164-174.	2.4	29
77	Source discriminants for near-field tsunamis. Geophysical Journal International, 2004, 158, 899-912.	2.4	188
78	Tsunami sources in the southern California bight. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	30
79	Tsunami Hazards Associated with the Catalina Fault in Southern California. Earthquake Spectra, 2004, 20, 917-950.	3.1	26
80	Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami. Pure and Applied Geophysics, 2003, 160, 2119-2146.	1.9	83
81	A Theoretical Comparison of Tsunamis from Dislocations and Landslides. Pure and Applied Geophysics, 2003, 160, 2177-2188.	1.9	86
82	Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 2003, 478, 101-109.	3.4	84
83	Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami. , 2003, , 2119-2146.		9
84	A Theoretical Comparison of Tsunamis from Dislocations and Landslides. , 2003, , 2177-2188.		3
85	Solving the Puzzle of the 1998 Papua New Guinea Tsunami: The Case for a Slump. , 2002, , 863.		2
86	Developing Inundation Maps for Southern California. , 2002, , 848.		5
87	The slump origin of the 1998 Papua New Guinea Tsunami. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 763-789.	2.1	305
88	Modeling of the November 3, 1994 Skagway, Alaska Tsunami. , 2002, , 915.		11
89	Tsunami and Seiche. New Directions in Civil Engineering, 2002, , .	0.1	20
90	Tsunamis within the Eastern Santa Barbara Channel. Geophysical Research Letters, 2001, 28, 643-646.	4.0	53

#	Article	IF	CITATIONS
91	Vanuatu earthquake and tsunami cause much damage, few casualties. Eos, 2000, 81, 641-647.	0.1	30
92	EXACT SOLUTIONS OF THE SHALLOW-WATER WAVE EQUATIONS. Series on Quality, Reliability and Engineering Statistics, 1999, , 61-131.	0.2	8
93	Tsunami in Papua New Guinea was as intense as first thought. Eos, 1999, 80, 101.	0.1	140
94	Geologie Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. , 1999, , 513-540.		1
95	Numerical Modeling of Tidal Wave Runup. Journal of Waterway, Port, Coastal and Ocean Engineering, 1998, 124, 157-171.	1.2	396
96	Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics, 1998, 374, 1-28.	3.4	155
97	Long-Wave Runup Models. , 1997, , .		29
98	Field survey of Mexican tsunami produces new data, unusual photos. Eos, 1997, 78, 85.	0.1	44
99	Extreme inundation flows during the Hokkaido-Nansei-Oki Tsunami. Geophysical Research Letters, 1997, 24, 1315-1318.	4.0	139
100	A Realistic Model for the 1992-96 Tidal Waves. , 1997, , .		0
101	Long Wave Runup on Coastal Structures. , 1997, , .		0
102	Model for the Leading Waves of Tsunamis. Physical Review Letters, 1996, 77, 2141-2144.	7.8	156
103	Laboratory experiments of tsunami runup on a circular island. Pure and Applied Geophysics, 1995, 144, 569-593.	1.9	205
104	Field survey of the East Java earthquake and tsunami of June 3, 1994. Pure and Applied Geophysics, 1995, 144, 839-854.	1.9	67
105	Field survey of the 1994 Mindoro Island, Philippines tsunami. Pure and Applied Geophysics, 1995, 144, 875-890.	1.9	45
106	Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2. Journal of Waterway, Port, Coastal and Ocean Engineering, 1995, 121, 308-316.	1.2	204
107	Runup of solitary waves on a circular Island. Journal of Fluid Mechanics, 1995, 302, 259-285.	3.4	386

Laboratory Experiments of Tsunami Runup on a Circular Island. , 1995, , 569-593.

#	Article	IF	CITATIONS
109	Field Survey of the 1994 Mindoro Island, Philippines Tsunami. , 1995, , 875-890.		Ο
110	Propagation and amplification of tsunamis at coastal boundaries. Nature, 1994, 372, 353-355.	27.8	114
111	Roots of \$J_gamma (z)pm iJ_{gamma +1}(z)=0\$ and the evaluation of integrals with cylindrical function kernels. Quarterly of Applied Mathematics, 1994, 52, 103-112.	0.7	5
112	The Flores Island tsunamis. Eos, 1993, 74, 369.	0.1	113
113	Passive control of delta wing rock. Journal of Aircraft, 1993, 30, 131-133.	2.4	6
114	Evolution of Maximum Amplitude of Solitary Waves on Plane Beaches. Journal of Waterway, Port, Coastal and Ocean Engineering, 1993, 119, 323-342.	1.2	67
115	Report on the International Workshop on Long-Wave Run-up. Journal of Fluid Mechanics, 1991, 229, 675.	3.4	104
116	Green's law and the evolution of solitary waves. Physics of Fluids A, Fluid Dynamics, 1991, 3, 490-491.	1.6	56
117	Tsunami runup on steep slopes: How good linear theory really is. Natural Hazards, 1991, 4, 221-234.	3.4	81
118	Tsunami Runup on Steep Slopes: How Good Linear Theory Really Is. , 1991, , 221-234.		10
119	Generation of Long Waves in Laboratory. Journal of Waterway, Port, Coastal and Ocean Engineering, 1990, 116, 252-266.	1.2	45
120	On the Maximum Runup of Cnoidal Waves , 1989, , 553.		0
121	Are Solitary Waves the Limiting Waves in Long Wave Runup?. , 1989, , 219.		1
122	Discussion of " Wave Reflection and Runâ€Up on Rough Slopes ―by Nobuhisa Kobayashi, Ashwini K. Otta, and Indarajut Roy (May, 1987, Vol. 113, No. 4). Journal of Waterway, Port, Coastal and Ocean Engineering, 1989, 115, 139-143.	1.2	6
123	Determining Hydrodynamic Force on Accelerating Plate in Fluid with Free Surface. Journal of Engineering Mechanics - ASCE, 1989, 115, 2480-2492.	2.9	4
124	On combining the Bernoulli and Poiseuille equation—A plea to authors of college physics texts. American Journal of Physics, 1989, 57, 1013-1019.	0.7	32
125	The anomalous behavior of the runup of cnoidal waves. Physics of Fluids, 1988, 31, 3-5.	1.4	41
126	On the roots of \$f(z)=J_0(z)-iJ_1(z)\$. Quarterly of Applied Mathematics, 1988, 46, 105-107.	0.7	26

#	Article	IF	CITATIONS
127	The runup of solitary waves. Journal of Fluid Mechanics, 1987, 185, 523-545.	3.4	775