Jonathan L Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7246771/publications.pdf

Version: 2024-02-01

186265 265206 5,900 50 28 42 citations h-index g-index papers 71 71 71 9546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A combination of potently neutralizing monoclonal antibodies isolated from an Indian convalescent donor protects against the SARS-CoV-2 Delta variant. PLoS Pathogens, 2022, 18, e1010465.	4.7	8
2	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	10.3	28
3	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	7.1	27
4	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	14.5	39
5	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
6	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
7	Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nature Communications, 2021, 12, 2938.	12.8	219
8	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95
9	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	12.4	79
10	One dose of COVID-19 nanoparticle vaccine REVC-128 protects against SARS-CoV-2 challenge at two weeks post-immunization. Emerging Microbes and Infections, 2021, 10, 2016-2029.	6. 5	12
11	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	6.4	5
12	Diverse Antibody Responses to Conserved Structural Motifs in Plasmodium falciparum Circumsporozoite Protein. Journal of Molecular Biology, 2020, 432, 1048-1063.	4.2	28
13	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
14	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	12.6	290
15	An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Reports, 2020, 33, 108274.	6.4	152
16	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	14.3	185
17	Visualization of the HIV-1 Env glycan shield across scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28014-28025.	7.1	57
18	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61

#	Article	IF	Citations
19	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 2020, 183, 1043-1057.e15.	28.9	860
20	A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket near the Fusion Peptide. Cell Reports, 2020, 33, 108428.	6.4	5
21	HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies. Cell Reports, 2020, 31, 107583.	6.4	60
22	Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. Science Advances, 2020, 6, eaba0468.	10.3	31
23	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	12.6	1,104
24	Structure and mechanism of monoclonal antibody binding to theÂjunctional epitope of Plasmodium falciparumÂcircumsporozoite protein. PLoS Pathogens, 2020, 16, e1008373.	4.7	30
25	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
26	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e 1008753 .		0
27	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates., 2020, 16, e1008753.		0
28	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e 1008753 .		0
29	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	4.7	61
30	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
31	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
32	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	11.0	42
33	SOS and IP Modifications Predominantly Affect the Yield but Not Other Properties of SOSIP.664 HIV-1 Env Glycoprotein Trimers. Journal of Virology, 2019, 94, .	3.4	4
34	Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity, 2019, 51, 915-929.e7.	14.3	111
35	Cryo-EM structure of <i>P. falciparum</i> circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Science Advances, 2018, 4, eaau8529.	10.3	70
36	Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 1116.	4.8	27

#	Article	IF	Citations
37	Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Cell Reports, 2018, 23, 3249-3261.	6.4	52
38	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	57
39	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
40	Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers. Scientific Reports, 2017, 7, 8390.	3.3	31
41	Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature, 2017, 548, 108-111.	27.8	154
42	Structural basis for antibody recognition of the NANP repeats in <i>Plasmodium falciparum</i> circumsporozoite protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10438-E10445.	7.1	116
43	Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature, 2017, 547, 360-363.	27.8	217
44	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
45	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
46	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	4.7	100
47	Algal-Produced Immunotoxins. Forum on Immunopathological Diseases and Therapeutics, 2013, 4, 241-254.	0.1	0
48	Isolation and Characterization of Cross-Neutralizing Coronavirus Antibodies from COVID-19+ Subjects. SSRN Electronic Journal, 0, , .	0.4	7
49	SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. SSRN Electronic Journal, 0, , .	0.4	13
50	A Strain-Specific Inhibitor of Receptor-Bound HIV-1 Targets a Pocket Near the Fusion Peptide and Offers a Template for Drug Design. SSRN Electronic Journal, 0 , , .	0.4	0