
Yiming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7245052/publications.pdf Version: 2024-02-01

YIMING LIU

#	Article	IF	CITATIONS
1	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	27.8	610
2	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	21.0	89
3	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	10.3	88
4	Recent progress on flexible nanogenerators toward selfâ€powered systems. InformaÄnÃ-Materiály, 2020, 2, 318-340.	17.3	85
5	Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81, 105590.	16.0	57
6	Thin, Skinâ€Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing. Advanced Electronic Materials, 2020, 6, 1901174.	5.1	53
7	Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing, 2022, 5, 201-209.	7.7	53
8	Skinâ€Integrated Grapheneâ€Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. Advanced Materials Technologies, 2019, 4, 1900744.	5.8	52
9	A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsystems and Nanoengineering, 2020, 6, 59.	7.0	45
10	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	16.0	39
11	Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Letters, 2022, 22, 5944-5953.	9.1	36
12	Crystallinity and grain boundary control of TIPS-pentacene in organic thin-film transistors for the ultra-high sensitive detection of NO ₂ . Journal of Materials Chemistry C, 2019, 7, 10196-10202.	5.5	34
13	Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. Research, 2020, 2020, 1085417.	5.7	33
14	Stretchable Sweatâ€Activated Battery in Skinâ€Integrated Electronics for Continuous Wireless Sweat Monitoring. Advanced Science, 2022, 9, e2104635.	11.2	29
15	Bioinspired Ultrathin Piecewise Controllable Soft Robots. Advanced Materials Technologies, 2021, 6, 2001095.	5.8	27
16	3D printed microstructures for flexible electronic devices. Nanotechnology, 2019, 30, 414001.	2.6	26
17	Triboelectric Nanogenerator Tattoos Enabled by Epidermal Electronic Technologies. Advanced Functional Materials, 2022, 32, .	14.9	25
18	Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy, 2020, 76, 105017.	16.0	24

Yiming Liu

#	Article	IF	CITATIONS
19	Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsystems and Nanoengineering, 2021, 7, 85.	7.0	24
20	Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flexible Electronics, 2022, 6, .	10.7	24
21	Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy, 2022, 92, 106755.	16.0	19
22	Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Materials Today Physics, 2022, 22, 100602.	6.0	19
23	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	9.1	19
24	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	5.5	18
25	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	5.1	18
26	Skin-Like Strain Sensors Enabled by Elastomer Composites for Human–Machine Interfaces. Coatings, 2020, 10, 711.	2.6	15
27	Thin, soft, <scp>garmentâ€integrated</scp> triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat, 2021, 3, e12123.	11.9	15
28	Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundamental Research, 2023, 3, 111-117.	3.3	6
29	Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. Journal of Materials Chemistry A, 2022, 10, 19662-19670.	10.3	5
30	Soft, stretchable, wireless intelligent threeâ€lead electrocardiograph monitors with feedback functions for warning of potential heart attack. SmartMat, 2022, 3, 668-684.	10.7	5
31	High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis. Biosensors, 2021, 11, 435.	4.7	2