
Simon Pinches

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7244463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active Control of Type-I Edge-Localized Modes withn=1Perturbation Fields in the JET Tokamak. Physical Review Letters, 2007, 98, 265004.	7.8	506
2	Control of Neoclassical Tearing Modes by Sawtooth Control. Physical Review Letters, 2002, 88, 105001.	7.8	217
3	Alfvén wave cascades in a tokamak. Physics of Plasmas, 2002, 9, 2027-2036.	1.9	140
4	Theory of Alfvén eigenmodes in shear reversed plasmas. Physics of Plasmas, 2003, 10, 3649-3660.	1.9	106
5	Cross-machine comparison of resonant field amplification and resistive wall mode stabilization by plasma rotation. Physics of Plasmas, 2006, 13, 056107.	1.9	100
6	Energetic ions in ITER plasmas. Physics of Plasmas, 2015, 22, .	1.9	97
7	Monitoring Alfvén Cascades with Interferometry on the JET Tokamak. Physical Review Letters, 2004, 93, 165001.	7.8	82
8	The role of energetic particles in fusion plasmas. Plasma Physics and Controlled Fusion, 2004, 46, B187-B200.	2.1	76
9	Spectroscopic determination of the internal amplitude of frequency sweeping TAE. Plasma Physics and Controlled Fusion, 2004, 46, S47-S57.	2.1	73
10	Active control of type-I edge localized modes on JET. Plasma Physics and Controlled Fusion, 2007, 49, B581-B589.	2.1	54
11	Stability of the resistive wall mode in JET. Plasma Physics and Controlled Fusion, 2009, 51, 055015.	2.1	53
12	The physics of sawtooth stabilization. Plasma Physics and Controlled Fusion, 2007, 49, B385-B394.	2.1	50
13	Three-dimensional corrugation of the plasma edge when magnetic perturbations are applied for edge-localized mode control in MAST. Plasma Physics and Controlled Fusion, 2012, 54, 105013.	2.1	46
14	Kinetic properties of shear Alfvén eigenmodes in tokamak plasmas. Physics of Plasmas, 2005, 12, 122501.	1.9	45
15	Guiding center particle simulation of wide-orbit neoclassical transport. Physics of Plasmas, 2001, 8, 5192-5198.	1.9	43
16	Physics and applications of three-ion ICRF scenarios for fusion research. Physics of Plasmas, 2021, 28, .	1.9	42
17	Compressional Alfvén Eigenmodes on MAST. Plasma Physics and Controlled Fusion, 2008, 50, 115011.	2.1	38
18	Observation of Confined Current Ribbon in JET Plasmas. Physical Review Letters, 2010, 104, 185003.	7.8	37

SIMON PINCHES

#	Article	IF	CITATIONS
19	Sawtooth control using off-axis NBI. Plasma Physics and Controlled Fusion, 2008, 50, 045006.	2.1	30
20	Deuterium beam acceleration with 3rd harmonic ion cyclotron resonance heating in Joint European Torus: Sawtooth stabilization and Alfvén eigenmodes. Physics of Plasmas, 2012, 19, 032115.	1.9	30
21	MHD limits to tokamak operation and their control. Plasma Physics and Controlled Fusion, 2003, 45, A163-A173.	2.1	27
22	Modeling sawtooth stabilization by energetic ions from neutral beam injection. Physics of Plasmas, 2007, 14, .	1.9	23
23	The effect of off-axis neutral beam injection on sawtooth stability in ASDEX Upgrade and Mega-Ampere Spherical Tokamak. Physics of Plasmas, 2009, 16, 072506.	1.9	21
24	Double-resonant fast particle-wave interaction. Nuclear Fusion, 2012, 52, 103019.	3.5	20
25	Studies of burning plasma physics in the Joint European Torus. Physics of Plasmas, 2004, 11, 2607-2615.	1.9	19
26	Monte Carlo Âfsimulation of the bootstrap current in the presence of a magnetic island. Plasma Physics and Controlled Fusion, 2003, 45, 71-87.	2.1	18
27	Saturated internal instabilities in advanced-tokamak plasmas. Europhysics Letters, 2010, 90, 55001.	2.0	16
28	Conceptual design of the ITER fast-ion loss detector. Review of Scientific Instruments, 2016, 87, 11D829.	1.3	16
29	Analysis and modelling of power modulation experiments in JET plasmas with internal transport barriers. Plasma Physics and Controlled Fusion, 2006, 48, 1469-1487.	2.1	14
30	Localized X-mode reflectometry measurements of Alfvén eigenmodes on the JET tokamak. Plasma Physics and Controlled Fusion, 2007, 49, 1371-1390.	2.1	14
31	Destabilization of TAE modes using ICRH in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2004, 46, 809-833.	2.1	12
32	Dependence of H-mode pedestal parameters on plasma magnetic geometry. Plasma Physics and Controlled Fusion, 2002, 44, A273-A278.	2.1	10
33	Simulation of Heating and Current Drive sources for scenarios of the ITER Research Plan. Nuclear Fusion, 0, , .	3.5	10
34	Non-linear MHD modelling of edge localized modes suppression by resonant magnetic perturbations in ITER. Nuclear Fusion, 2022, 62, 066022.	3.5	9
35	Drift orbit islands of energetic particles due to 3D fields in ITER. Nuclear Fusion, 2021, 61, 106029.	3.5	7
36	Radially propagating high-n/high-mmode cascades during flattening or inversion of centralqprofile in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 1998, 40, 1057-1071.	2.1	6

SIMON PINCHES

#	Article	IF	CITATIONS
37	ELM control optimization for various ITER scenarios based on linear and quasi-linear figures of merit. Physics of Plasmas, 2020, 27, 042510.	1.9	4
38	Simulations of Fusion Power Measurements by Monitors of Neutron Flux in Evolving ITER Plasma. Journal of Fusion Energy, 2020, 39, 40-52.	1.2	3
39	Loss of energetic particles due to resistive wall mode instability in ITER. Nuclear Fusion, 2022, 62, 066011.	3.5	3
40	Quasi-linear toroidal simulations of resonant magnetic perturbations in eight ITER H-mode scenarios. Nuclear Fusion, 2022, 62, 096008.	3.5	3
41	Confinement transitions (H-mode) in JET inner wall limiter plasmas. Plasma Physics and Controlled Fusion, 2006, 48, 757-776.	2.1	1
42	Interaction between fast particles and magnetohydrodynamic waves in stationary plasmas. Plasma Physics and Controlled Fusion, 2011, 53, 105009.	2.1	0
43	Property of neoclassical GAMs induced by pellet generated plasma perturbations in the gyrokinetic code XGC. Physics of Plasmas, 2021, 28, 044501.	1.9	0