
Xiaoshuang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7243994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2372-2377.	7.1	1,114
2	Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics. Advanced Materials, 2015, 27, 6575-6581.	21.0	722
3	Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 2017, 3, e1700589.	10.3	419
4	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	10.0	359
5	Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.	26.0	292
6	Recent Progress on Localized Field Enhanced Twoâ€dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small, 2017, 13, 1700894.	10.0	234
7	Arrayed Van Der Waals Broadband Detectors for Dualâ€Band Detection. Advanced Materials, 2017, 29, 1604439.	21.0	218
8	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	12.8	213
9	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano, 2019, 13, 2511-2519.	14.6	198
10	Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4294-4301.	3.1	178
11	Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nature Communications, 2015, 6, 6499.	12.8	173
12	Defect Engineering in MoSe ₂ for the Hydrogen Evolution Reaction: From Point Defects to Edges. ACS Applied Materials & Interfaces, 2017, 9, 42688-42698.	8.0	171
13	Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Advanced Materials, 2014, 26, 8203-8209.	21.0	168
14	The capacity fading mechanism and improvement of cycling stability in MoS ₂ -based anode materials for lithium-ion batteries. Nanoscale, 2016, 8, 2918-2926.	5.6	168
15	Interface control and modification of band alignment and electrical properties of HfTiO/GaAs gate stacks by nitrogen incorporation. Journal of Materials Chemistry C, 2014, 2, 5299-5308.	5.5	142
16	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	8.0	139
17	When Nanowires Meet Ultrahigh Ferroelectric Field–High-Performance Full-Depleted Nanowire Photodetectors. Nano Letters, 2016, 16, 2548-2555.	9.1	135
18	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. Nano Letters, 2016, 16, 6416-6424.	9.1	134

#	Article	IF	CITATIONS
19	Highâ€Sensitivity Floatingâ€Gate Phototransistors Based on WS ₂ and MoS ₂ . Advanced Functional Materials, 2016, 26, 6084-6090.	14.9	124
20	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials, 2019, 29, 1900314.	14.9	121
21	Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances, 2021, 7, .	10.3	121
22	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced Science, 2021, 8, e2100569.	11.2	118
23	Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. Nanoscale, 2016, 8, 15196-15204.	5.6	110
24	Highâ€Performance Ferroelectric Polymer Sideâ€Gated CdS Nanowire Ultraviolet Photodetectors. Advanced Functional Materials, 2016, 26, 7690-7696.	14.9	107
25	Melting behavior in ultrathin metallic nanowires. Physical Review B, 2002, 66, .	3.2	105
26	PtTe ₂ â€Based Typeâ€l Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small, 2019, 15, e1903362.	10.0	98
27	Unveiling the Growth Mechanism of MoS ₂ with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. Crystal Growth and Design, 2018, 18, 1012-1019.	3.0	92
28	Layer-Dependent Dopant Stability and Magnetic Exchange Coupling of Iron-Doped MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2015, 7, 7534-7541.	8.0	90
29	Toward Sensitive Roomâ€Temperature Broadband Detection from Infrared to Terahertz with Antennaâ€Integrated Black Phosphorus Photoconductor. Advanced Functional Materials, 2017, 27, 1604414.	14.9	88
30	Ferroelectric Localized Field–Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small, 2018, 14, e1800492.	10.0	85
31	High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity. Scientific Reports, 2014, 4, 6332.	3.3	77
32	Anisotropic ultrasensitive PdTe ₂ -based phototransistor for room-temperature long-wavelength detection. Science Advances, 2020, 6, .	10.3	74
33	Atomic structures and covalent-to-metallic transition of lead clustersPbn(n=2–22). Physical Review A, 2005, 71, .	2.5	73
34	Ultrasensitive Roomâ€Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Advanced Functional Materials, 2018, 28, 1801786.	14.9	73
35	Visible to near-infrared photodetectors based on MoS ₂ vertical Schottky junctions. Nanotechnology, 2017, 28, 484002.	2.6	73
36	Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6, .	10.3	71

#	Article	IF	CITATIONS
37	Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Scientific Reports, 2017, 7, 10639.	3.3	68
38	Melting behavior of ultrathin titanium nanowires. Physical Review B, 2003, 67, .	3.2	66
39	Multiple channeled phenomena in heterostructures with defects mode. Applied Physics Letters, 2004, 84, 1629-1631.	3.3	64
40	Effect of dimethylaluminumhydride-derived aluminum oxynitride passivation layer on the interface chemistry and band alignment of HfTiO-InGaAs gate stacks. APL Materials, 2013, 1, .	5.1	60
41	Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface. Nanoscale, 2016, 8, 16284-16291.	5.6	59
42	Controllable Doping in 2D Layered Materials. Advanced Materials, 2021, 33, e2104942.	21.0	59
43	Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Journal of Applied Physics, 2014, 115, .	2.5	55
44	Broadband Achromatic Metalens in Midâ€Wavelength Infrared. Laser and Photonics Reviews, 2021, 15, 2100020.	8.7	54
45	Broadband circular polarizers constructed using helix-like chiral metamaterials. Nanoscale, 2016, 8, 14725-14729.	5.6	53
46	Structure and magnetic properties of Co-Cu bimetallic clusters. Physical Review B, 2002, 66, .	3.2	52
47	Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors. Scientific Reports, 2014, 4, 5470.	3.3	52
48	Defect Passivation and Photoluminescence Enhancement of Monolayer MoS ₂ Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth. ACS Applied Materials & Interfaces, 2020, 12, 9563-9571.	8.0	52
49	Ferroelectric polymer tuned two dimensional layered MoTe ₂ photodetector. RSC Advances, 2016, 6, 87416-87421.	3.6	51
50	MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters, 2017, 111, .	3.3	47
51	Hybrid WSe ₂ –In ₂ O ₃ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. ACS Applied Materials & Interfaces, 2017, 9, 34489-34496.	8.0	47
52	Electrochemical Lithiation Mechanism of Two-Dimensional Transition-Metal Dichalcogenide Anode Materials: Intercalation versus Conversion Reactions. Journal of Physical Chemistry C, 2019, 123, 2139-2146.	3.1	47
53	Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling. Journal of Electronic Materials, 2010, 39, 981-985.	2.2	46
54	Influencing Sources for Dark Current Transport and Avalanche Mechanisms in Planar and Mesa HgCdTe p-i-n Electron-Avalanche Photodiodes. IEEE Transactions on Electron Devices, 2018, 65, 572-576.	3.0	44

#	Article	IF	CITATIONS
55	Room-Temperature Single-Photon Detector Based on Single Nanowire. Nano Letters, 2018, 18, 5439-5445.	9.1	42
56	Novel SnSxSe1â^'x nanocrystals with tunable band gap: experimental and first-principles calculations. Journal of Materials Chemistry, 2011, 21, 12605.	6.7	40
57	High performance colored selective absorbers for architecturally integrated solar applications. Journal of Materials Chemistry A, 2015, 3, 7353-7360.	10.3	39
58	Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742-19750.	5.6	39
59	Formation of stable fullerenelikeGanAsnclusters(6≤â‰9): Gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B, 2006, 74, .	3.2	38
60	Thickness-Dependent Phase Stability and Electronic Properties of GaN Nanosheets and MoS ₂ /GaN van der Waals Heterostructures. Journal of Physical Chemistry C, 2019, 123, 3861-3867.	3.1	38
61	High-frequency rectifiers based on type-II Dirac fermions. Nature Communications, 2021, 12, 1584.	12.8	37
62	Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light: Science and Applications, 2022, 11, 53.	16.6	35
63	Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions. Journal of Materials Chemistry C, 2020, 8, 7350-7357.	5.5	34
64	Controllable growth of typeâ€II Dirac semimetal PtTe ₂ atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InformaÄnÃ-Materiály, 2021, 3, 705-715.	17.3	33
65	In Situ Atom Scale Visualization of Domain Wall Dynamics in VO2 Insulator-Metal Phase Transition. Scientific Reports, 2014, 4, 6544.	3.3	31
66	Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. NPG Asia Materials, 2018, 10, 318-327.	7.9	31
67	Recent progress and challenges based on two-dimensional material photodetectors. Nano Express, 2021, 2, 012001.	2.4	31
68	Electron-injection driven phase transition in two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2020, 8, 4432-4440.	5.5	31
69	Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures. Journal of Materials Chemistry C, 2017, 5, 9687-9693.	5.5	29
70	Roomâ€Temperature Highâ€Gain Longâ€Wavelength Photodetector via Optical–Electrical Controlling of Hot Carriers in Graphene. Advanced Optical Materials, 2018, 6, 1800836.	7.3	28
71	Structural and electronic properties ofSbn(n=2–10)clusters using density-functional theory. Physical Review A, 2005, 72, .	2.5	27
72	Spin Switch of the Transition-Metal-Doped Boron Nitride Sheet through H/F Chemical Decoration. Journal of Physical Chemistry C, 2014, 118, 8899-8906.	3.1	27

#	Article	IF	CITATIONS
73	Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. Journal of Applied Physics, 2004, 95, 424-426.	2.5	26
74	Density-functional study of structural and electronic properties ofAlnN(n=2–12)clusters. Physical Review A, 2005, 72, .	2.5	26
75	CVD-derived Hf-based High-k Gate Dielectrics. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 235-261.	12.3	26
76	Structural, electronic, and optical properties of hydrogenated few-layer silicene: Size and stacking effects. Journal of Applied Physics, 2013, 114, .	2.5	26
77	Performance Optimization of InSb Infrared Focal-Plane Arrays with Diffractive Microlenses. Journal of Electronic Materials, 2014, 43, 2795-2801.	2.2	26
78	Fabrication of ZnO/CdS/Cu ₂ ZnSnS ₄ p–n heterostructure nanorod arrays via a solution-based route. CrystEngComm, 2013, 15, 1139-1145.	2.6	24
79	Reflective metalens with sub-diffraction-limited and multifunctional focusing. Scientific Reports, 2017, 7, 12632.	3.3	24
80	SbSI whisker/PbI ₂ flake mixed-dimensional van der Waals heterostructure for photodetection. CrystEngComm, 2019, 21, 3779-3787.	2.6	24
81	Broadband Spinâ€Ðriven Anomalous Surface Plasmon Polariton Steering via Vâ€Shaped Aperture Metasurfaces. Advanced Theory and Simulations, 2019, 2, 1800167.	2.8	24
82	Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection. Scientific Reports, 2015, 5, 9389.	3.3	23
83	Realization of Both High Absorption of Active Materials and Low Ohmic Loss in Plasmonic Cavities. Advanced Optical Materials, 2019, 7, 1801627.	7.3	23
84	HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses. Scientific Reports, 2020, 10, 6372.	3.3	23
85	Prediction of half-semiconductor antiferromagnets with vanishing net magnetization. RSC Advances, 2015, 5, 46640-46647.	3.6	21
86	Circular Polarization Discrimination Enhanced by Anisotropic Media. Advanced Optical Materials, 2020, 8, 1901800.	7.3	20
87	Carrier dynamics in submonolayer InGaAsâ^•GaAs quantum dots. Applied Physics Letters, 2006, 89, 013113.	3.3	19
88	Structural, vibrational and luminescence properties of longitudinal twinning Zn ₂ GeO ₄ nanowires. CrystEngComm, 2013, 15, 764-768.	2.6	19
89	Surface morphology, composition and wettability Cu2O/CuO composite thin films prepared by a facile hydrothermal method. Applied Physics A: Materials Science and Processing, 2015, 118, 901-906.	2.3	19
90	Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	19

#	Article	IF	CITATIONS
91	Top-gated black phosphorus phototransistor for sensitive broadband detection. Nanoscale, 2018, 10, 5852-5858.	5.6	19
92	Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors. Journal of Applied Physics, 2019, 126, .	2.5	19
93	Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors With Guard Ring Designs. IEEE Transactions on Electron Devices, 2020, 67, 542-546.	3.0	19
94	Intrinsic Polarization-Induced Enhanced Ferromagnetism and Self-Doped p–n Junctions in CrBr ₃ /GaN van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 8764-8773.	8.0	19
95	Relaxations and bonding mechanism inHg1â^'xCdxTewith mercury vacancy defect: First-principles study. Physical Review B, 2006, 73, .	3.2	18
96	ZnSeâ€Based Longitudinal Twinning Nanowires. Advanced Engineering Materials, 2014, 16, 459-465.	3.5	18
97	Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design. IEEE Transactions on Electron Devices, 2020, 67, 2001-2007.	3.0	18
98	High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. Npj Quantum Materials, 2021, 6, .	5.2	18
99	Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber. Plasmonics, 2018, 13, 2267-2272.	3.4	17
100	Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology. ACS Nano, 2021, 15, 5138-5146.	14.6	17
101	Controllable light transmission through cascaded metal films perforated with periodic hole arrays. Applied Physics Letters, 2008, 93, 221909.	3.3	16
102	Direct observation and manipulation of hot electrons at room temperature. National Science Review, 2021, 8, nwaa295.	9.5	16
103	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Hg<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^`</mml:mo><mml:mi>xmathvariant="normal">Cd</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:mi </mml:msub><mml:mi mathvariant="normal">Tex>: First-principles study. Physical Review</mml:mi </mml:mrow>	mml:mi>< 3.2	/mml:mrow>
104	B. 2007, 76. Gate-tunable ReS2/MoTe2 heterojunction with high-performance photodetection. Optical and Quantum Electronics, 2019, 51, 1.	3.3	15
105	Hierarchical computational screening of layered lead-free metal halide perovskites for optoelectronic applications. Journal of Materials Chemistry A, 2021, 9, 6476-6486.	10.3	15
106	Potential solution-induced HfAlO dielectrics and their applications in low-voltage-operating transistors and high-gain inverters. RSC Advances, 2018, 8, 36584-36595.	3.6	14
107	Coupling of localized surface plasmon modes in compound structure with metallic nanoparticle and nanohole arrays. Journal of Applied Physics, 2010, 108, 093520.	2.5	13
108	Tailoring electronic properties of InAs nanowires by surface functionalization. Journal of Applied Physics, 2011, 110, 103713.	2.5	13

#	Article	IF	CITATIONS
109	Analysis of Interface Scattering in AlGaN/GaN/InGaN/GaN Double-Heterojunction High-Electron-Mobility Transistors. Journal of Electronic Materials, 2012, 41, 2130-2138.	2.2	13
110	Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films. Nanoscale Research Letters, 2014, 9, 485.	5.7	13
111	Enhanced photoelectrochemical properties of nanocrystalline TiO2 electrode by surface sensitization with CuxO quantum dots. Scientific Reports, 2017, 7, 5291.	3.3	13
112	Distinctive Performance of Terahertz Photodetection Driven by Chargeâ€Densityâ€Wave Order in CVDâ€Grown Tantalum Diselenide. Advanced Functional Materials, 2019, 29, 1905057.	14.9	13
113	High-responsivity and polarization-discriminating terahertz photodetector based on plasmonic resonance. Applied Physics Letters, 2019, 114, .	3.3	13
114	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors, 2022, 22, 677.	3.8	13
115	Stoichiometric effect on electrical and near-infrared photodetection properties of full-composition-range GaAs1â^'xSbx nanowires. Nano Research, 2021, 14, 3961-3968.	10.4	12
116	Ultrasensitive and Selfâ€Powered Terahertz Detection Driven by Nodalâ€Line Dirac Fermions and Van der Waals Architecture. Advanced Science, 2021, 8, e2102088.	11.2	12
117	Selective excitation of surface-polariton Bloch waves for efficient transmission of light through a subwavelength hole array in a thin metal film. Physical Review B, 2007, 76, .	3.2	11
118	Effects of growth substrate on the morphologies of TiO2 hierarchical nanoarrays and their optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 2103-2107.	2.2	11
119	Selectedâ€Area Chemical Nanoengineering of Vanadium Dioxide Nanostructures Through Nonlithographic Direct Writing. Advanced Materials Interfaces, 2018, 5, 1800974.	3.7	11
120	Sulfur-Driven Transition from Vertical to Lateral Growth of 2D SnS–SnS ₂ Heterostructures and Their Band Alignments. Journal of Physical Chemistry C, 2020, 124, 27820-27828.	3.1	11
121	The mechanism of the photoresponse blueshifts for the n-type conversion region of n+-on-p Hg0.722Cd0.278Te infrared photodiode. Journal of Applied Physics, 2010, 107, 044513.	2.5	10
122	Growth, structural and vibrating properties of CdSe–Ge, CdSe–Ge–CdSe, CdSe–Ge/Ge, Ge–GeSe heterostructure nanowires and GeSe nanobelts. CrystEngComm, 2011, 13, 2734.	2.6	10
123	Effect of solution concentration on surface morphology and photocatalytic activity of ZnO thin films synthesized by hydrothermal methods. Journal of Materials Science: Materials in Electronics, 2014, 25, 882-887.	2.2	10
124	Effect of ethylene glycol monomethyl ether ratio in mixed solvent on surface morphology, wettability and photocatalytic properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 2014, 25, 2948-2956.	2.2	10
125	Uniformly Broadband Far-Infrared Response From the Photocarrier Tunneling of Mesa Si:P Blocked-Impurity-Band Detector. IEEE Transactions on Electron Devices, 2021, 68, 560-564.	3.0	10
126	Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI ₃ /GaN heterojunction. Journal of Materials Chemistry C, 2022, 10, 1984-1990.	5.5	10

#	Article	IF	CITATIONS
127	Spacer Cation Engineering of Two-Dimensional Hybrid Perovskites with Tunable Band Alignment and Optoelectronic Properties. Journal of Physical Chemistry C, 2022, 126, 8408-8416.	3.1	10
128	Realization of Integrated Narrow Bandpass Filters in the Infrared Region. Journal of Infrared, Millimeter and Terahertz Waves, 2004, 25, 1677-1683.	0.6	9
129	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8232-8232.	21.0	9
130	Bulk photovoltaic effect at infrared wavelength in strained Bi2Te3 films. APL Materials, 2016, 4, .	5.1	9
131	A novel transmission model for plasmon-induced transparency in plasmonic waveguide system with a single resonator. RSC Advances, 2016, 6, 51480-51484.	3.6	9
132	Polarizationâ€Induced Bandâ€Alignment Transition and Nonvolatile pâ€n Junctions in 2D Van der Waals Heterostructures. Advanced Electronic Materials, 2022, 8, .	5.1	9
133	Light transmission through metallic two-dimensional arrays of compound coaxial structures with central and annular apertures: A charge oscillation picture. Journal of Applied Physics, 2009, 106, 113529.	2.5	8
134	Metal-organic chemical vapor deposition of aluminium oxynitride from propylamine–dimethylaluminium hydride and oxygen: growth mode dependence and performance optimization. Journal of Materials Chemistry, 2012, 22, 7468.	6.7	8
135	Photodetectors: Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538.	21.0	8
136	Crystal Phase and Facet Effects on the Structural Stability and Electronic Properties of GaP Nanowires. Journal of Physical Chemistry C, 2015, 119, 12030-12036.	3.1	8
137	A visible high efficiency and polarization-insensitive 34-level dielectric metasurface hologram. RSC Advances, 2017, 7, 26371-26376.	3.6	8
138	Dark Mode Driven Extra-narrow and Multiband Absorber. Plasmonics, 2018, 13, 729-735.	3.4	8
139	Complete band gaps in three-dimensional quantum dot photonic crystals. Physical Review B, 2006, 74, .	3.2	7
140	Microscopic Origin of Electrical Compensation in Arsenic-Doped HgCdTe by Molecular Beam Epitaxy: Density Functional Study. Journal of Electronic Materials, 2007, 36, 890-894.	2.2	7
141	Surface morphology, electrochemical and electrical performances of ZnO thin films sensitized with Ag nanoparticles by UV irradiation. Journal of Materials Science: Materials in Electronics, 2019, 30, 9798-9805.	2.2	7
142	Design of Power Splitters Based on Hybrid Plasmonic Waveguides. Applied Sciences (Switzerland), 2021, 11, 8644.	2.5	7
143	The enhanced infrared absorption of quantum well infrared photodetector based on a hybrid structure of periodic gold stripes overlaid with a gold film. Optics Communications, 2014, 328, 91-95.	2.1	6
144	Enhanced photocatalytic performances of ZnO with Na doping and graphene oxide quantum dots. Journal of Materials Science: Materials in Electronics, 2016, 27, 9131-9135.	2.2	6

#	Article	IF	CITATIONS
145	Effect of ZnS layers on optical properties of prepared CdS/TiO2 nanotube arrays for photocatalyst. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	6
146	Facile Hydrothermal Synthesis of SnO ₂ Nanoparticles with Enhanced Lithium Storage Performance. Chemistry Letters, 2017, 46, 1639-1642.	1.3	6
147	Enhanced visible light response of ZnO porous thin film by post-annealing treatment. Journal of Materials Science: Materials in Electronics, 2017, 28, 4051-4057.	2.2	6
148	Cut-off wavelength manipulation of pixel-level plasmonic microcavity for long wavelength infrared detection. Applied Physics Letters, 2019, 114, .	3.3	6
149	Effect of vacuum annealing on solar light response and photocatalytic performance of Ag nanoparticle-modified ZnO thin films. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
150	Catalytic effect and nucleation stability of Au on GaAs(111)B surface. Journal of Applied Physics, 2010, 108, 013526.	2.5	5
151	Facile synthesis of Zn1â^'xCuxO nanorods with a very broad visible band. Electronic Materials Letters, 2012, 8, 477-480.	2.2	5
152	The respective effects of direct and indirect couplings on the plasmon-induced transparency in waveguide systems. Optics Communications, 2016, 364, 83-87.	2.1	5
153	Photodetectors: Ultrasensitive Room‶emperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator (Adv. Funct. Mater. 31/2018). Advanced Functional Materials, 2018, 28, 1870219.	14.9	5
154	Mechanism of dark current dependence on reverse voltage in mid-wavelength infrared HgCdTe mesa PIN avalanche diode. Optical and Quantum Electronics, 2021, 53, 1.	3.3	5
155	Rapid Wafer-Scale Growth of MoS2(1–x)Se2x Alloy Monolayers with Tunable Compositions and Optical Properties for High-Performance Photodetectors. ACS Applied Nano Materials, 0, , .	5.0	5
156	Photonic slide rule with metasurfaces. Light: Science and Applications, 2022, 11, 77.	16.6	5
157	Effect of solution concentration on surface morphology, chemical composition and photoresponse of CuO/Cu2O composite thin films grown by hydrothermal synthesis. Journal of Materials Science: Materials in Electronics, 2014, 25, 4877-4882.	2.2	4
158	Simulation of superconducting single photon detector coupled with metal–insulator–metal concentric ring grating. Optical and Quantum Electronics, 2014, 46, 1253-1259.	3.3	4
159	Chemical potential effects on polytypism in Au-catalyzed GaAs nanowire molecular beam epitaxy growth: A first-principles study. Chemical Physics Letters, 2016, 644, 147-151.	2.6	4
160	Tailoring Active Far-Infrared Resonator with Graphene Metasurface and Its Complementary. Plasmonics, 2017, 12, 353-360.	3.4	4
161	Influence of solution concentrations on surface morphology and wettability of ZnO thin films. Electronic Materials Letters, 2013, 9, 171-176.	2.2	3
162	Enhanced photocatalytic activity of Mg0.05Zn0.95O thin films prepared by sol–gel method through a cycle. Journal of Materials Science: Materials in Electronics, 2014, 25, 2053-2059.	2.2	3

#	Article	IF	CITATIONS
163	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small, 2015, 11, 2346-2346.	10.0	3
164	Plasmon Resonances in a Periodic Square Coaxial Hole Array in a Graphene Sheet. Plasmonics, 2016, 11, 1129-1137.	3.4	3
165	First-principles calculations of GaN:Gd nanowires: Carbon-dopants-induced room-temperature ferromagnetism. AIP Advances, 2017, 7, .	1.3	3
166	Hydroxide MgSn(OH)6: A promising new photocatalyst for methyl orange degradation. Electronic Materials Letters, 2017, 13, 339-343.	2.2	3
167	Effect of solution concentration on surface morphology, optical properties and solar light response of ZnO thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 2731-2738.	2.2	3
168	Dynamics of the damping oscillator formed by the collective generation of surface polaritons for extraordinary light transmission through subwavelength hole arrays in thin metal films. Physical Review B, 2007, 76, .	3.2	2
169	THERMAL RADIATION PROPERTY OF A THREE DIMENSIONAL PHOTONIC CRYSTAL BASED ON MULTIPLE SCATTERING METHOD. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 425-434.	0.6	2
170	Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study. Science in China Series D: Earth Sciences, 2009, 52, 1928-1932.	0.9	2
171	The guidance for bowtie antennas design in near-field enhancement applications. , 2012, , .		2
172	Group III dopant segregation and semiconductor-to-metal transition in ZnO nanowires: a first principles study. RSC Advances, 2013, 3, 19793.	3.6	2
173	Simulation of superconducting single photon detector coupled with metal-insulator-metal circular grating. , 2013, , .		2
174	Effect of Cu additions on morphology and optical properties of ZnO nanorod arrays by two-step method. Journal of Materials Science: Materials in Electronics, 2013, 24, 3036-3040.	2.2	2
175	Effect of edge modification on transport properties of finite-sized, graphene nanoribbon-based molecular devices. RSC Advances, 2014, 4, 52366-52371.	3.6	2
176	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). Small, 2015, 11, 890-890.	10.0	2
177	Negative Refraction Based On Supermode Theory in Metal Waveguide Arrays. Plasmonics, 2019, 14, 441-445.	3.4	2
178	Theoretical Investigation on Microcavity Coupler for Terahertz Quantum-Well Infrared Photodetectors. IEEE Access, 2020, 8, 176149-176157.	4.2	2
179	Carbon Nanotube Far Infrared Detectors with High Responsivity and Superior Polarization Selectivity Based on Engineered Optical Antennas. Sensors, 2021, 21, 5221.	3.8	2
180	Dip-Coating Self-Assembly Fabrication and Polarization Sensitive Photoresponse of Aligned Single-Walled Carbon Nanotube Film. Sensors, 2022, 22, 490.	3.8	2

#	Article	IF	CITATIONS
181	Interaction Between AsHg and V Hg in Arsenic-Doped Hg1â^'x Cd x Te. Journal of Electronic Materials, 2013, 42, 3054-3058.	2.2	1
182	Terahertz plasmon resonances in GaN and graphene. , 2013, , .		1
183	First principles study of half Heusler alloys PdFeBi and PdCoBi. , 2014, , .		1
184	Microwave-Induced DC Response of Spin Wave Resonance Driven by an Anisotropic Built-In Field in a Permalloy Thin Strip. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
185	Structural and Energetic Analysis of GroupÂV Impurities in p-Type HgCdTe: The Case of As and Sb. Journal of Electronic Materials, 2014, 43, 2849-2853.	2.2	1
186	The calculation about the positions of self-imaging in a limited number of metal waveguide arrays. Optical and Quantum Electronics, 2015, 47, 2391-2398.	3.3	1
187	Subwavelength focusing by a sheltered metallic waveguide array. Optics Communications, 2015, 349, 151-155.	2.1	1
188	A facile method to fabricate superhydrophobic ZnO nanostructure with petal effect. Journal of Materials Science: Materials in Electronics, 2016, 27, 11524-11529.	2.2	1
189	The Supermodes Excitations of Surface Plasmon Polaritons in Metal Waveguide Arrays. Journal of Nanoscience and Nanotechnology, 2016, 16, 8101-8105.	0.9	1
190	Electrical and optical properties of a kind of ferroelectric oxide films comprising of PbZr0.4Ti0.6O3 stacks. Journal of Applied Physics, 2017, 122, 024102.	2.5	1
191	Optical properties and UV photoresponse of Na2x Zn1â^x O thin film. Journal of Materials Science: Materials in Electronics, 2017, 28, 1022-1027.	2.2	1
192	Terahertz Photon Detection: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashortâ€Channel Black Phosphorus Devices (Adv. Sci. 5/2020). Advanced Science, 2020, 7, 2070029.	11.2	1
193	Collapse Breakdown in Mid-Wavelength Infrared HgCdTe Avalanche Photodetector. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	2.9	1
194	Nonmonotonic wavelength dependence of the polarization-sensitive infrared photoresponse of an anisotropic semimetal. Nanoscale, 2022, 14, 7314-7321.	5.6	1
195	Realization of integrated narrow bandpass filters in the infrared region. , 0, , .		0
196	Fabrication of IR Reflectors by Porous Silicon Technique. , 2006, , .		0
197	The hybridization of plasmons in GaN-based two-dimensional channels. , 2012, , .		0
198	The tunable plasmonic resonant absorption in grating-gate GaN-based HEMTs for THz detection. , 2012, ,		0

12

#	Article	IF	CITATIONS
199	First-principles study of defects distribution with different arsenic doping source in HgCdTe. , 2012, , .		0
200	Plasmon resonances and rectifying of terahertz radiation in GaN and InGaAs-based field-effect transistors. , 2012, , .		0
201	Second-Order Nonlinearity in Triangular Lattice Perforated Gold Film due to Surface Plasmas Resonance. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	0
202	Cavity modes in hybrid structure of QWIP and plasmonic cavity. , 2014, , .		0
203	Twisted split-ring chiral metamaterials for broadband circular dichroism. , 2014, , .		0
204	Strong and broadband circular dichroism based on helix-like chiral metamaterials. , 2014, , .		0
205	Plasmon Resonances in a Stacked Pair of Periodic Graphene Hole Arrays. Plasmonics, 2015, 10, 1695-1702.	3.4	0
206	Plasmon resonances of terahertz absorption in nano-patterned graphene. , 2015, , .		0
207	Room-temperature, high-gain, broad-spectrum InAs nanowire infrared photodetectors. , 2015, , .		0
208	Subwavelength diffraction in a limited number of metal waveguide arrays. Journal of Modern Optics, 2015, 62, 321-326.	1.3	0
209	The inelastic electron tunneling spectroscopy of curved finite-sized graphene nanoribbon based molecular devices. RSC Advances, 2015, 5, 53313-53319.	3.6	0
210	Ferromagnetic Resonance Line Shapes in Permalloy Strips at Low Magnetic Fields. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	0
211	An efficiency and response enhanced metamaterial single photon detector. , 2016, , .		0
212	Cut-off wavelength extension of QWIP by MIM plasmonic cavity. , 2016, , .		0
213	Plasmonic micro-disk cavity quantum well infrared photodetectors. , 2017, , .		0
214	Dielectric Metalens and Its Application in Near-Infrared Single Photon Detection. , 2018, , .		0
215	The Novel of <i>n–p–n</i> Type Transition in the ZnSe/Ge Heterojunction Nanowire: First Principles Study. Journal of Nanoscience and Nanotechnology, 2019, 19, 5847-5853.	0.9	0
216	Topological Dirac Semimetals for Ultra-Sensitive Terahertz Detection. , 2021, , .		0

#	Article	IF	CITATIONS
217	Metamaterial integrated circular polarization quantum well infrared photodetectors. , 2021, , .		0
218	Multiple Modes Response of Coâ€Aperture 2D/1D Phototransistors. Advanced Materials Interfaces, 0, , 2102568.	3.7	0