
Stephen G Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7241525/publications.pdf Version: 2024-02-01

STEDHEN C. MAHED

#	Article	IF	CITATIONS
1	Investigating the susceptibility of treatment-resistant oesophageal tumours to natural killer cell-mediated responses. Clinical and Experimental Medicine, 2023, 23, 411-425.	3.6	2
2	PD-1 blockade enhances chemotherapy toxicity in oesophageal adenocarcinoma. Scientific Reports, 2022, 12, 3259.	3.3	6
3	PD-1 and TIGIT blockade differentially affect tumour cell survival under hypoxia and glucose deprived conditions in oesophageal adenocarcinoma; implications for overcoming resistance to PD-1 blockade in hypoxic tumours. Translational Oncology, 2022, 19, 101381.	3.7	4
4	Cooperation between chemotherapy and immune checkpoint blockade to enhance anti-tumour T cell immunity in oesophageal adenocarcinoma. Translational Oncology, 2022, 20, 101406.	3.7	5
5	Impact of radiotherapy on the immune landscape in oesophageal adenocarcinoma. World Journal of Gastroenterology, 2022, 28, 2302-2319.	3.3	6
6	Abstract 3381: Establishment of a novel multi-omic biomarker panel in cyst fluid and blood for stratifying patient risk of pancreatic cancer. Cancer Research, 2022, 82, 3381-3381.	0.9	0
7	Multi-Omic Biomarkers as Potential Tools for the Characterisation of Pancreatic Cystic Lesions and Cancer: Innovative Patient Data Integration. Cancers, 2021, 13, 769.	3.7	13
8	PI3K inhibition as a novel therapeutic strategy for neoadjuvant chemoradiotherapy resistant oesophageal adenocarcinoma. British Journal of Radiology, 2021, 94, 20201191.	2.2	1
9	Chemotherapy regimens induce inhibitory immune checkpoint protein expression on stem-like and senescent-like oesophageal adenocarcinoma cells. Translational Oncology, 2021, 14, 101062.	3.7	12
10	Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines, 2021, 9, 1024.	3.2	9
11	Selective effects of radiotherapy on viability and function of invariant natural killer T cells in vitro. Radiotherapy and Oncology, 2020, 145, 128-136.	0.6	2
12	Silencing microRNA-330-5p increases MMP1 expression and promotes an invasive phenotype in oesophageal adenocarcinoma. BMC Cancer, 2019, 19, 784.	2.6	10
13	Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma. Cancer Letters, 2019, 447, 115-129.	7.2	17
14	Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells. Pharmaceuticals, 2019, 12, 33.	3.8	9
15	Development and characterisation of a panel of phosphatidylinositide 3-kinase – mammalian target of rapamycin inhibitor resistant lung cancer cell lines. Scientific Reports, 2018, 8, 1652.	3.3	9
16	PS02.174: THE ACTION OF A NOVEL RADIOSENSITISER WITHIN THE OESOPHAGEAL ADENOCARCINOMA TUMOUR MICROENVIROMENT. Ecological Management and Restoration, 2018, 31, 171-171.	0.4	0
17	Identifying a Novel Role for Fractalkine (CX3CL1) in Memory CD8+ T Cell Accumulation in the Omentum of Obesity-Associated Cancer Patients. Frontiers in Immunology, 2018, 9, 1867.	4.8	24
18	MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Molecular Therapy - Nucleic Acids, 2017, 8, 317-329.	5.1	35

STEPHEN G MAHER

#	Article	IF	CITATIONS
19	MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget, 2017, 8, 11400-11413.	1.8	32
20	Low MiR-187 Expression Promotes Resistance to Chemoradiation Therapy In Vitro and Correlates with Treatment Failure in Patients with Esophageal Adenocarcinoma. Molecular Medicine, 2016, 22, 388-397.	4.4	29
21	Visceral obesity stimulates anaphase bridge formation and spindle assembly checkpoint dysregulation in radioresistant oesophageal adenocarcinoma. Clinical and Translational Oncology, 2016, 18, 632-640.	2.4	5
22	MicroRNAs and Cancer. , 2015, , 67-90.		0
23	MicroRNA-330-5p as a Putative Modulator of Neoadjuvant Chemoradiotherapy Sensitivity in Oesophageal Adenocarcinoma. PLoS ONE, 2015, 10, e0134180.	2.5	33
24	Altered Mitochondrial Function and Energy Metabolism Is Associated with a Radioresistant Phenotype in Oesophageal Adenocarcinoma. PLoS ONE, 2014, 9, e100738.	2.5	75
25	MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. Journal of Molecular Medicine, 2012, 90, 1449-1458.	3.9	93
26	MicroRNA in Oncogenesis. , 2012, , 89-110.		0
27	Radiation Sensitivity of Esophageal Adenocarcinoma: The Contribution of the RNA-Binding Protein RNPC1 and p21-Mediated Cell Cycle Arrest to Radioresistance. Radiation Research, 2012, 177, 272-279.	1.5	27
28	BarrettÂ's to Oesophageal Cancer Sequence: A Model of Inflammatory-Driven Upper Gastrointestinal Cancer. Digestive Surgery, 2012, 29, 251-260.	1.2	55
29	Serum Proteomic Profiling Reveals That Pretreatment Complement Protein Levels are Predictive of Esophageal Cancer Patient Response to Neoadjuvant Chemoradiation. Annals of Surgery, 2011, 254, 809-817.	4.2	51
30	Basic Concepts of Inflammation and its Role in Carcinogenesis. Recent Results in Cancer Research, 2011, 185, 1-34.	1.8	11
31	Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery. British Journal of Cancer, 2010, 102, 73-79.	6.4	50
32	Alterations in DNA Repair Efficiency are Involved in the Radioresistance of Esophageal Adenocarcinoma. Radiation Research, 2010, 174, 703-711.	1.5	65
33	Increased spontaneous apoptosis, but not survivin expression, is associated with histomorphologic response to neoadjuvant chemoradiation in rectal cancer. International Journal of Colorectal Disease, 2009, 24, 1261-1269.	2.2	12
34	Clinical Use of Interferonâ $\in \hat{i}^3$. Annals of the New York Academy of Sciences, 2009, 1182, 69-79.	3.8	237
35	The roles of microRNA in cancer and apoptosis. Biological Reviews, 2009, 84, 55-71.	10.4	346
36	Gene Expression Analysis of Diagnostic Biopsies Predicts Pathological Response to Neoadjuvant Chemoradiotherapy of Esophageal Cancer. Annals of Surgery, 2009, 250, 729-737.	4.2	71

#	Article	IF	CITATIONS
37	IFN-α and IFN-λ differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biology and Therapy, 2008, 7, 1109-1115.	3.4	150
38	Interferon: Cellular Executioner or White Knight?. Current Medicinal Chemistry, 2007, 14, 1279-1289.	2.4	147
39	A Mutation in the SH2 Domain of STAT2 Prolongs Tyrosine Phosphorylation of STAT1 and Promotes Type I IFN-induced Apoptosis. Molecular Biology of the Cell, 2007, 18, 2455-2462.	2.1	28
40	Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clinical and Experimental Immunology, 2005, 139, 279-286.	2.6	57
41	Activationâ€induced cell death: The controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunology and Cell Biology, 2002, 80, 131-137.	2.3	132