
Simon Michaeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239998/publications.pdf Version: 2024-02-01

SIMON MICHAELL

#	Article	IF	CITATIONS
1	ATI1 (ATG8-interacting protein 1) and ATI2 define a plant starvation-induced reticulophagy pathway and serve as MSBP1/MAPR5 cargo receptors. Autophagy, 2021, 17, 3375-3388.	9.1	31
2	The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nature Plants, 2021, 7, 468-480.	9.3	50
3	Eating the messenger (RNA): autophagy shapes the cellular RNA landscape. Journal of Experimental Botany, 2021, 72, 6803-6807.	4.8	1
4	The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22872-22883.	7.1	83
5	Autophagy: A Double-Edged Sword to Fight Plant Viruses. Trends in Plant Science, 2017, 22, 646-648.	8.8	29
6	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
7	Autophagy in Plants – What's New on the Menu?. Trends in Plant Science, 2016, 21, 134-144.	8.8	221
8	Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?. Frontiers in Plant Science, 2015, 6, 419.	3.6	215
9	Chloroplast degradation: one organelle, multiple degradation pathways. Trends in Plant Science, 2015, 20, 264-265.	8.8	73
10	Involvement of autophagy in the direct ER to vacuole protein trafficking route in plants. Frontiers in Plant Science, 2014, 5, 134.	3.6	32
11	Degradation of Organelles or Specific Organelle Components via Selective Autophagy in Plant Cells. International Journal of Molecular Sciences, 2014, 15, 7624-7638.	4.1	50
12	<i>Arabidopsis</i> ATG8-INTERACTING PROTEIN1 Is Involved in Autophagy-Dependent Vesicular Trafficking of Plastid Proteins to the Vacuole Â. Plant Cell, 2014, 26, 4084-4101.	6.6	181
13	ATI1, a newly identified atg8-interacting protein, binds two different Atg8 homologs. Plant Signaling and Behavior, 2012, 7, 685-687.	2.4	26
14	A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant Journal, 2011, 67, 485-498.	5.7	160