
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239838/publications.pdf Version: 2024-02-01

LITKA KLIMESOVA

#	Article	IF	CITATIONS
1	The LEDA Traitbase: a database of lifeâ€history traits of the Northwest European flora. Journal of Ecology, 2008, 96, 1266-1274.	4.0	1,306
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	CLOâ€PLA: the database of clonal and bud bank traits of Central European flora [§] . Journal of Vegetation Science, 2009, 20, 511-516.	2.2	301
4	Bud banks and their role in vegetative regeneration – A literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 115-129.	2.7	297
5	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	7.3	277
6	A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 2021, 232, 973-1122.	7.3	216
7	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	3.2	166
8	<scp>CLO</scp> â€ <scp>PLA</scp> : a database of clonal and budâ€bank traits of the Central European flora. Ecology, 2017, 98, 1179-1179.	3.2	151
9	The ecology and significance of below-ground bud banks in plants. Annals of Botany, 2019, 123, 1099-1118.	2.9	137
10	Belowground plant functional ecology: Towards an integrated perspective. Functional Ecology, 2018, 32, 2115-2126.	3.6	109
11	Distribution of clonal growth forms in wetlands. Aquatic Botany, 2010, 92, 33-39.	1.6	103
12	Transgenerational plasticity in clonal plants. Evolutionary Ecology, 2010, 24, 1537-1543.	1.2	86
13	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	2.8	86
14	Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125485.	2.7	81
15	CLO-PLA2 – a database of clonal plants in central Europe. Plant Ecology, 1999, 141, 9-19.	1.6	78
16	Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology, 2018, 32, 799-808.	3.6	76
17	Adaptive transgenerational plasticity in the perennial <i>Plantago lanceolata</i> . Oikos, 2014, 123, 41-46.	2.7	75
18	Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytologist, 2016, 210, 13-17.	7.3	75

#	Article	IF	CITATIONS
19	Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Applied Vegetation Science, 2011, 14, 132-147.	1.9	74
20	The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: do they promote plant coexistence in species-rich meadows?. Evolutionary Ecology, 2001, 15, 363-382.	1.2	71
21	Resprouting of herbs in disturbed habitats: is it adequately described by Bellingham-Sparrow's model?. Oikos, 2003, 103, 225-229.	2.7	71
22	Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos, 2015, 124, 469-476.	2.7	70
23	Linking Plant Functional Ecology to Island Biogeography. Trends in Plant Science, 2020, 25, 329-339.	8.8	70
24	Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Annals of Botany, 2017, 120, 341-349.	2.9	67
25	The Association of Dispersal and Persistence Traits of Plants with Different Stages of Succession in Central European Man-Made Habitats. Folia Geobotanica, 2011, 46, 289-302.	0.9	62
26	Evolution of clonal growth forms in angiosperms. New Phytologist, 2020, 225, 999-1010.	7.3	59
27	A quest for speciesâ€level indicator values for disturbance. Journal of Vegetation Science, 2016, 27, 628-636.	2.2	58
28	On Plant Modularity Traits: Functions and Challenges. Trends in Plant Science, 2017, 22, 648-651.	8.8	57
29	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
30	The Neglected Belowground Dimension of Plant Dominance. Trends in Ecology and Evolution, 2020, 35, 763-766.	8.7	55
31	Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 18-21.	2.7	54
32	The effects of timing and duration of floods on growth of yound plants of Phalaris arundinacea L. and Urtica dioica L.: an experimental study. Aquatic Botany, 1994, 48, 21-29.	1.6	53
33	Intermediate growth forms as a model for the study of plant clonality functioning: an example with root sprouters. Evolutionary Ecology, 2004, 18, 669-681.	1.2	53
34	High Arctic vegetation after 70Âyears: a repeated analysis from Svalbard. Polar Biology, 2010, 33, 635-639.	1.2	50
35	Species traits and plant performance: functional tradeâ€offs in a large set of species in a botanical garden. Journal of Ecology, 2012, 100, 1522-1533.	4.0	50
36	Cushions of Thylacospermum caespitosum (Caryophyllaceae) do not facilitate other plants under extreme altitude and dry conditions in the north-west Himalayas. Annals of Botany, 2011, 108, 567-573.	2.9	49

#	Article	IF	CITATIONS
37	Clonal Growth Forms in Eastern Ladakh, Western Himalayas: Classification and Habitat Preferences. Folia Geobotanica, 2011, 46, 191-217.	0.9	45
38	Clonal and bud bank traits: patterns across temperate plant communities. Journal of Vegetation Science, 2015, 26, 243-253.	2.2	45
39	Maternal effects alter progeny's response to disturbance and nutrients in two Plantago species. Oikos, 2010, 119, 1700-1710.	2.7	44
40	Root sprouting in Rumex acetosella under different nutrient levels. Plant Ecology, 1999, 141, 33-39.	1.6	43
41	Carbohydrate storage in rhizomes of Phragmites australis: the effects of altitude and rhizome age. Aquatic Botany, 1999, 64, 105-110.	1.6	42
42	Effects of long- and short-term management on the functional structure of meadows through species turnover and intraspecific trait variability. Oecologia, 2016, 180, 941-950.	2.0	42
43	Effect of abandonment and plant classification on carbohydrate reserves of meadow plants. Plant Biology, 2011, 13, 243-251.	3.8	40
44	Positive long-term effect of mulching on species and functional trait diversity in a nutrient-poor mountain meadow in Central Europe. Agriculture, Ecosystems and Environment, 2011, 145, 10-28.	5.3	40
45	Effects of landâ€use changes on plant functional and taxonomic diversity along a productivity gradient in wet meadows. Journal of Vegetation Science, 2013, 24, 898-909.	2.2	39
46	Clonal growth and plant species abundance. Annals of Botany, 2014, 114, 377-388.	2.9	38
47	Late holocene history and vegetation dynamics of a floodplain alder carr: A case study from eastern Bohemia, Czech Republic. Folia Geobotanica, 2000, 35, 43-58.	0.9	37
48	Resprouting after disturbance in the short-lived herb Rorippa palustris (Brassicaceae): an experiment with juveniles. Acta Oecologica, 2004, 25, 143-150.	1.1	37
49	Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Annals of Botany, 2012, 110, 1357-1367.	2.9	37
50	Effects of changes in management on resistance and resilience in three grassland communities. Applied Vegetation Science, 2013, 16, 640-649.	1.9	37
51	Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos, 2011, 120, 1110-1120.	2.7	36
52	Plant traits and regeneration of urban plant communities after disturbance: Does the bud bank play any role?. Applied Vegetation Science, 2008, 11, 387-394.	1.9	33
53	Weeds that can do both tricks: vegetative versus generative regeneration of the short-lived root-sprouting herbs Rorippa palustris and Barbarea vulgaris. Weed Research, 2008, 48, 131-135.	1.7	33
54	Compensation of seed production after severe injury in the short-lived herb Barbarea vulgaris. Basic and Applied Ecology, 2008, 9, 44-54.	2.7	33

#	Article	IF	CITATIONS
55	Senescence, ageing and death of the whole plant: morphological prerequisites and constraints of plant immortality. New Phytologist, 2015, 206, 14-18.	7.3	33
56	Nutrients and disturbance history in two <i>Plantago</i> species: maternal effects as a clue for observed dichotomy between resprouting and seeding strategies. Oikos, 2009, 118, 1669-1678.	2.7	32
57	Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen. Polish Polar Research, 2012, 33, 421-442.	0.9	31
58	Differences in below-ground bud bank density and composition along a climatic gradient in the temperate steppe of northern China. Annals of Botany, 2017, 120, 755-764.	2.9	31
59	Do Clonal and Bud Bank Traits Vary in Correspondence with Soil Properties and Resource Acquisition Strategies? Patterns in Alpine Communities in the Scandian Mountains. Folia Geobotanica, 2011, 46, 237-254.	0.9	30
60	Grassland restoration on ex-arable land by transfer of brush-harvested propagules and green hay. Agriculture, Ecosystems and Environment, 2019, 272, 74-82.	5.3	30
61	Winter belowground: Changing winters and the perennating organs of herbaceous plants. Functional Ecology, 2021, 35, 1627-1639.	3.6	30
62	Different plant trait scaling in dry versus wet <scp>C</scp> entral <scp>E</scp> uropean meadows. Journal of Vegetation Science, 2012, 23, 709-720.	2.2	29
63	Biological flora of Central Europe: Rorippa palustris (L.) Besse. Flora: Morphology, Distribution, Functional Ecology of Plants, 2004, 199, 453-463.	1.2	28
64	Integration in the clonal plant Eriophorum angustifolium: an experiment with a three-member-clonal system in a patchy environment. Evolutionary Ecology, 2008, 22, 325-336.	1.2	28
65	How is Regeneration of Plants after Mowing Affected by Shoot Size in Two Species-Rich Meadows with Different Water Supply?. Folia Geobotanica, 2010, 45, 225-238.	0.9	28
66	Alpine plant growth and reproduction dynamics in a warmer world. New Phytologist, 2020, 228, 1295-1305.	7.3	28
67	Rootâ€sprouting in mycoâ€heterotrophic plants: prepackaged symbioses or overcoming meristem limitation?. New Phytologist, 2007, 173, 8-10.	7.3	27
68	Life-history variation in the short-lived herb Rorippa palustris: effect of germination date and injury timing. Plant Ecology, 2007, 189, 237-246.	1.6	27
69	Altitudinal changes in the growth and allometry of Rumex alpinus. Alpine Botany, 2012, 122, 35-44.	2.4	27
70	Changes in trait divergence and convergence along a productivity gradient in wet meadows. Agriculture, Ecosystems and Environment, 2014, 182, 96-105.	5.3	27
71	Clonal vs leaf-height-seed (LHS) traits: which are filtered more strongly across habitats?. Folia Geobotanica, 2017, 52, 269-281.	0.9	27
72	Biomass allocation in a clonal vine: Effects of intraspecific competition and nutrient availability. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 237-244.	0.4	26

#	Article	IF	CITATIONS
73	Are clonal plants more frequent in cold environments than elsewhere?. Plant Ecology and Diversity, 2011, 4, 373-378.	2.4	26
74	Fineâ€scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography, 2016, 39, 338-348.	4.5	26
75	Disturbance is an important factor in the evolution and distribution of root-sprouting species. Evolutionary Ecology, 2017, 31, 387-399.	1.2	26
76	Incorporating clonality into the plant ecology research agenda. Trends in Plant Science, 2021, 26, 1236-1247.	8.8	25
77	Fitness of resprouters versus seeders in relation to nutrient availability in two Plantago species. Acta Oecologica, 2009, 35, 541-547.	1.1	24
78	Biological flora of Central Europe: Rumex alpinus L Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 67-79.	2.7	24
79	Variability of contemporary vegetation around Petuniabukta, central Spitsbergen. Polish Polar Research, 2012, 33, 383-394.	0.9	24
80	Links between shoot and plant longevity and plant economics spectrum: Environmental and demographic implications. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 22, 55-62.	2.7	24
81	Enforced Clonality Confers a Fitness Advantage. Frontiers in Plant Science, 2016, 7, 2.	3.6	23
82	Response of clonal versus non-clonal herbs to disturbance: Different strategies revealed. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 44, 125529.	2.7	23
83	Life-history variation in the short-lived herb Rorippa palustris: The role of carbon storage. Acta Oecologica, 2009, 35, 691-697.	1.1	21
84	Carbohydrate storage in meadow plants and its depletion after disturbance: do roots and stem-derived organs differ in their roles?. Oecologia, 2014, 175, 51-61.	2.0	21
85	Resprouting after disturbance: an experimental study with short-lived monocarpic herbs. Folia Geobotanica, 2004, 39, 1-12.	0.9	20
86	Effect of mowing and fertilization on biomass and carbohydrate reserves of Molinia caerulea at two organizational levels. Acta Oecologica, 2011, 37, 299-306.	1.1	20
87	Carbohydrate storage in herbs: the forgotten functional dimension of the plant economic spectrum. Annals of Botany, 2021, 127, 813-825.	2.9	20
88	Distribution of clonal growth traits among wetland habitats. Aquatic Botany, 2011, 95, 88-93.	1.6	19
89	Effects of Fertilization and Competition on Plant Biomass Allocation and Internal Resources: Does Plantago lanceolata Follow the Rules of Economic Theory?. Folia Geobotanica, 2014, 49, 49-64.	0.9	19
90	Are belowground clonal traits good predictors of ecosystem functioning in temperate grasslands?. Functional Ecology, 2021, 35, 787-795.	3.6	19

#	Article	IF	CITATIONS
91	Population dynamics of Phalaris arundinacea L. and Urtica dioica L. in a floodplain during a dry period. Wetlands Ecology and Management, 1995, 3, 79-85.	1.5	18
92	Potential Bud Bank Responses to Apical Meristem Damage and Environmental Variables: Matching or Complementing Axillary Meristems?. PLoS ONE, 2014, 9, e88093.	2.5	18
93	Reproduction by seed and clonality in plants: correlated syndromes or independent strategies?. Journal of Ecology, 2016, 104, 1696-1706.	4.0	17
94	Is the scaling relationship between carbohydrate storage and leaf biomass in meadow plants affected by the disturbance regime?. Annals of Botany, 2017, 120, 979-985.	2.9	17
95	The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 2019, 30, 777-788.	2.2	17
96	Comparative analysis of root sprouting and its vigour in temperate herbs: anatomical correlates and environmental predictors. Annals of Botany, 2021, 127, 931-941.	2.9	17
97	Restoration of a speciesâ€rich meadow on arable land by transferring meadow blocks. Applied Vegetation Science, 2010, 13, 403-411.	1.9	16
98	Checklist of root-sprouters in the Czech flora: mapping the gaps in our knowledge. Folia Geobotanica, 2017, 52, 337-343.	0.9	16
99	Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. New Phytologist, 2021, 229, 620-630.	7.3	16
100	Annuals sprouting adventitiously from the hypocotyl: their compensatory growth and implications for weed management. Biologia (Poland), 2009, 64, 923-929.	1.5	15
101	Occurrence of adventitious sprouting in short-lived monocarpic herbs: a field study of 22 weedy species. Annals of Botany, 2010, 105, 905-912.	2.9	15
102	Plant seedlings in a speciesâ€rich meadow: effect of management, vegetation type and functional traits. Applied Vegetation Science, 2013, 16, 286-295.	1.9	15
103	Next-gen plant clonal ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 49, 125601.	2.7	15
104	Reiteration in the short lived root-sprouting herb <i>Rorippa palustris</i> : does the origin of buds matter?. Botany, 2010, 88, 630-638.	1.0	14
105	Shoot apical meristem and plant body organization: a cross-species comparative study. Annals of Botany, 2017, 120, 833-843.	2.9	14
106	Philip Grime's fourth corner: are there plant species adapted to high disturbance and low productivity?. Oikos, 2018, 127, 1125-1131.	2.7	14
107	Allocation to clonal growth: Critical questions and protocols to answer them. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 43, 125511.	2.7	14
108	Year-to-year changes in expression of maternal effects in perennial plants. Basic and Applied Ecology, 2010, 11, 702-708.	2.7	13

#	Article	IF	CITATIONS
109	A test of the explanatory power of plant functional traits on the individual and population levels. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 189-199.	2.7	13
110	No evidence for nutrient foraging in root-sprouting clonal plants. Basic and Applied Ecology, 2018, 28, 27-36.	2.7	13
111	Effects of disturbance regime on carbohydrate reserves in meadow plants. AoB PLANTS, 2015, 7, plv123.	2.3	12
112	The plant functional traits that explain species occurrence across fragmented grasslands differ according to patch management, isolation, and wetness. Landscape Ecology, 2017, 32, 791-805.	4.2	12
113	Strong impact of management regimes on rhizome biomass across Central European temperate grasslands. Ecological Applications, 2021, 31, e02317.	3.8	12
114	The hidden half of the fine root differentiation in herbs: nonacquisitive belowground organs determine fineâ€root traits. Oikos, 2023, 2023, .	2.7	12
115	Establishment growth and bud-bank formation in Epilobium angustifolium: the effects of nutrient availability, plant injury, and environmental heterogeneity. Botany, 2009, 87, 195-201.	1.0	11
116	Compensatory growth of <i>Euphorbia peplus</i> regenerating from a bud bank. Botany, 2011, 89, 313-321.	1.0	11
117	To resprout or not to resprout? Modeling population dynamics of a root-sprouting monocarpic plant under various disturbance regimes. Plant Ecology, 2014, 215, 1245-1254.	1.6	11
118	Accounting for clonality in comparative plant demography – growth or reproduction?. Folia Geobotanica, 2017, 52, 433-442.	0.9	11
119	Disentangling evolutionary, environmental and morphological drivers of plant anatomical adaptations to drought and cold in Himalayan graminoids. Oikos, 2019, 128, 1576-1587.	2.7	11
120	Searching for the Relevance of Clonal and Bud Bank Traits Across Floras and Communities. Folia Geobotanica, 2011, 46, 109-115.	0.9	10
121	Biomass and Stored Carbohydrate Compensation after Above-Ground Biomass Removal in a Perennial Herb: Does Environmental Productivity Play a Role?. Folia Geobotanica, 2014, 49, 17-29.	0.9	10
122	Root sprouting in Knautia arvensis (Dipsacaceae): effects of polyploidy, soil origin and nutrient availability. Plant Ecology, 2015, 216, 901-911.	1.6	10
123	The effect of injury on whole-plant senescence: an experiment with two root-sprouting <i>Barbarea</i> species. Annals of Botany, 2016, 117, 667-679.	2.9	10
124	Insularity promotes plant persistence strategies in edaphic island systems. Global Ecology and Biogeography, 2022, 31, 753-764.	5.8	10
125	Vegetative regeneration of biennial Oenothera species after disturbance: Field observations and experiment. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 287-297.	1.2	9
126	Growth of the alpine herb Rumex alpinus over two decades: effect of climate fluctuations and local conditions. Plant Ecology, 2013, 214, 1071-1084.	1.6	9

#	Article	IF	CITATIONS
127	Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard. Polar Research, 2014, 33, 20797.	1.6	9
128	Underground organs of Brazilian Asteraceae: testing the CLO-PLA database traits. Folia Geobotanica, 2017, 52, 367-385.	0.9	9
129	Position of tillers in a clone determines their ontogeny: example of the clonal grass Phalaris arundinacea. Folia Geobotanica, 2017, 52, 317-325.	0.9	9
130	Climate warming and extended droughts drive establishment and growth dynamics in temperate grassland plants. Agricultural and Forest Meteorology, 2022, 313, 108762.	4.8	9
131	Species-area curves revisited: the effects of model choice on parameter sensitivity to environmental, community, and individual plant characteristics. Plant Ecology, 2012, 213, 1675-1686.	1.6	8
132	Adventitious sprouting enables the invasive annual herb <i>Euphorbia geniculata</i> to regenerate after severe injury. Ecological Research, 2012, 27, 841-847.	1.5	8
133	Changes in biomass allocation in species rich meadow after abandonment: Ecological strategy or allometry?. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 379-387.	2.7	8
134	Multiple Regenerative Strategies of Short-Lived Species: An Effect on Geographical Distribution, Preference of Human-Made Habitats and Invasive Status. Folia Geobotanica, 2011, 46, 181-189.	0.9	7
135	Belowground bud bank and its relationship with aboveground vegetation under watering and nitrogen addition in temperate semiarid steppe. Ecological Indicators, 2021, 125, 107520.	6.3	7
136	Growth, root respiration and photosynthesis of a root-sprouting short-lived herb after severe biomass removal. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 284, 151915.	1.2	7
137	The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: do they promote plant coexistence in species-rich meadows?. , 2002, , 141-160.		7
138	The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. Functional Ecology, 2022, 36, 314-325.	3.6	7
139	Sticking around: Plant persistence strategies on edaphic islands. Diversity and Distributions, 2022, 28, 1850-1862.	4.1	7
140	Functional Traits in a Species-Rich Grassland and a Short-Term Change in Management: Is There a Competition-Colonization Trade-Off?. Folia Geobotanica, 2013, 48, 373-391.	0.9	6
141	Local adaptation of annual weed populations to habitats differing in disturbance regime. Evolutionary Ecology, 2016, 30, 861-876.	1.2	6
142	A tale of two grasslands: how belowground storage organs coordinate their traits with water-use traits. Plant and Soil, 2021, 465, 533-548.	3.7	6
143	Linking sheep density and grazing frequency to persistence of herb species in an alpine environment. Ecological Research, 2014, 29, 411-420.	1.5	5
144	Disentangling phylogenetic and functional components of shape variation among shoot apical meristems of a wide range of herbaceous angiosperms. American Journal of Botany, 2020, 107, 20-30.	1.7	5

#	Article	IF	CITATIONS
145	Half of the (big) picture is missing!. American Journal of Botany, 2020, 107, 385-389.	1.7	5
146	Hidden belowâ€ground plant diversity buffers against species loss during landâ€use change in speciesâ€rich grasslands. Journal of Vegetation Science, 2021, 32, .	2.2	5
147	Using Available Information to Assess the Potential Effects of Climate Change on Vegetation in the High Arctic: North Billjefjorden, Central Spitsbergen (Svalbard). Ambio, 2012, 41, 435-445.	5.5	4
148	The effects of flooding and injury on vegetative regeneration from roots: a case study with Rorippa palustris. Plant Ecology, 2013, 214, 999-1006.	1.6	4
149	Comparing functional diversity in traits and demography of <scp>C</scp> entral <scp>E</scp> uropean vegetation. Journal of Vegetation Science, 2013, 24, 910-920.	2.2	4
150	Young clonal and non-clonal herbs differ in growth strategy but not in aboveground biomass compensation after disturbance. Oecologia, 2020, 193, 925-935.	2.0	4
151	Restoration of ecosystem functions: Seed production in restored and ancient grasslands. Applied Vegetation Science, 2021, 24, .	1.9	4
152	Climbing strategy in herbs does not necessarily lead to lower investments into stem biomass. Plant Ecology, 2020, 221, 1159-1166.	1.6	3
153	Serious Research with Great Fun: the Strange Case of Jan Åuspa LepÅ; (and Other Plant Ecologists). Folia Geobotanica, 2013, 48, 297-306.	0.9	2
154	Data on different seed harvesting methods used in grassland restoration on ex-arable land. Data in Brief, 2019, 25, 104011.	1.0	2
155	Switching from monocarpic to polycarpic perennial life histories in a cold climate: a commentary on â€~Physiological costs of clonal growth'. Annals of Botany, 2020, 125, iv-v.	2.9	2
156	The species richness–productivity relationship varies among regions and productivity estimates, but not with spatial resolution. Oikos, 2021, 130, 1704-1714.	2.7	2
157	Mycorrhizal status is a poor predictor of the distribution of herbaceous species along the gradient of soil nutrient availability in coastal and grassland habitats. Mycorrhiza, 2021, 31, 577-587.	2.8	2
158	Seed production of co-occurring species: Regenerative strategies, plant economic spectrum or architectural constraints?. Basic and Applied Ecology, 2022, 58, 121-129.	2.7	2
159	Stoichiometry versus ecology: the relationships between genome size and guanine–cytosine content, and tissue nitrogen and phosphorus in grassland herbs. Annals of Botany, 2022, 130, 189-197.	2.9	2
160	Introduction to special issue on the ecology of clonal plants. Folia Geobotanica, 2017, 52, 265-267.	0.9	1
161	Effect of nutrient and light stress on the mortality and growth of young clonal and non-clonal herbs after biomass removal. Folia Geobotanica, 2021, 56, 99.	0.9	1
162	Comparative root anatomy and root bud development after injury in two perennial herbs. Plant Biology, 2022, , .	3.8	1

#	Article	IF	CITATIONS
163	Demographic correction—A tool for inference from individuals to populations. Functional Ecology, 0, , .	3.6	1
164	Folia Geobotanica – Revisiting Horizons. Folia Geobotanica, 2013, 48, 1-5.	0.9	0