Tian Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239734/publications.pdf Version: 2024-02-01

ΤΙΛΝΙ ΧΙΛ

#	Article	IF	CITATIONS
1	NLRP3 inflammasome activation determines the fibrogenic potential of PM2.5 air pollution particles in the lung. Journal of Environmental Sciences, 2022, 111, 429-441.	3.2	21
2	Use of a liver-targeting nanoparticle platform to intervene in peanut-induced anaphylaxis through delivery of an Ara h2 T-cell epitope. Nano Today, 2022, 42, 101370.	6.2	11
3	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications. Advanced Materials, 2022, 34, e2106456.	11.1	51
4	Utility of Ocular β-D-Glucan Testing in Patients with Fungal Endophthalmitis. Retinal Cases and Brief Reports, 2022, Publish Ahead of Print, .	0.3	0
5	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications (Adv. Mater. 11/2022). Advanced Materials, 2022, 34, .	11.1	1
6	Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter, 2022, 5, 1162-1191.	5.0	11
7	Silver nanoclusters show advantages in macrophage tracing in vivo and modulation of anti-tumor immuno-microenvironment. Journal of Controlled Release, 2022, 348, 470-482.	4.8	9
8	Kupffer Cells Degrade ¹⁴ C-Labeled Few-Layer Graphene to ¹⁴ CO ₂ in Liver through Erythrophagocytosis. ACS Nano, 2021, 15, 396-409.	7.3	28
9	Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-κB mediated acute lung inflammation in mice. Archives of Toxicology, 2021, 95, 195-205.	1.9	22
10	Use of macrophage as a Trojan horse for cancer nanotheranostics. Materials and Design, 2021, 198, 109388.	3.3	15
11	Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS Nano, 2021, 15, 1608-1626.	7.3	36
12	Palladium nanoplates scotch breast cancer lung metastasis by constraining epithelial-mesenchymal transition. National Science Review, 2021, 8, .	4.6	18
13	Nanoparticleâ€Based Activatable Probes for Bioimaging. Advanced Biology, 2021, 5, e2000193.	1.4	5
14	E-Cigarettes and Cardiopulmonary Health. Function, 2021, 2, zqab004.	1.1	36
15	Arsenic, Cadmium, Lead, and Mercury in Lactation Foods and Prenatal Vitamins: Potentially Avoidable Exposure for Breastfeeding Mothers and Infants. Breastfeeding Medicine, 2021, 16, 558-563.	0.8	2
16	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	6.2	46
17	Nanotechnology: new opportunities for the development of patchâ€clamps. Journal of Nanobiotechnology, 2021, 19, 97.	4.2	23
18	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Nonâ€Toxic 2D Boron Nitride Effects. Small, 2021, 17, e2101084.	5.2	15

#	Article	IF	CITATIONS
19	Binding of Benzo[<i>a</i>]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS Nano, 2021, 15, 9717-9731.	7.3	29
20	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	7.8	17
21	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
22	Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. Small, 2021, 17, e2102545.	5.2	27
23	Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. Nano Today, 2021, 39, 101161.	6.2	11
24	Prognostic significance of HSF2BP in lung adenocarcinoma. Annals of Translational Medicine, 2021, 9, 1559-1559.	0.7	5
25	Nano-La2O3 Induces Honeybee (Apis mellifera) Death and Enriches for Pathogens in Honeybee Gut Bacterial Communities. Frontiers in Microbiology, 2021, 12, 780943.	1.5	3
26	An integrative pan-cancer analysis of biological and clinical impacts underlying ubiquitin-specific-processing proteases. Oncogene, 2020, 39, 587-602.	2.6	11
27	Effects of Electronic Cigarettes on Indoor Air Quality and Health. Annual Review of Public Health, 2020, 41, 363-380.	7.6	51
28	Graphene Oxide Promotes Cancer Metastasis through Associating with Plasma Membrane To Promote TGF-β Signaling-Dependent Epithelial–Mesenchymal Transition. ACS Nano, 2020, 14, 818-827.	7.3	43
29	Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver. ACS Nano, 2020, 14, 877-890.	7.3	21
30	Potential nanoparticle applications for prevention, diagnosis, and treatment of COVIDâ€19. View, 2020, 1, 20200105.	2.7	13
31	Chronic Exposure to Titanium Dioxide Nanoparticles Induces Commensal-to-Pathogen Transition in <i>Escherichia coli</i> . Environmental Science & Technology, 2020, 54, 13186-13196.	4.6	21
32	Heterogenous Internalization of Nanoparticles at Ultra-Trace Concentration in Environmental Individual Unicellular Organisms Unveiled by Single-Cell Mass Cytometry. ACS Nano, 2020, 14, 12828-12839.	7.3	18
33	Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS Nano, 2020, 14, 13343-13366.	7.3	91
34	Adaption/resistance to antimicrobial nanoparticles: Will it be a problem?. Nano Today, 2020, 34, 100909.	6.2	33
35	Black phosphorus for fighting antibiotic-resistant bacteria: What is known and what is missing. Science of the Total Environment, 2020, 721, 137740.	3.9	21
36	LLGL1 Regulates Gemcitabine Resistance by Modulating the ERK-SP1-OSMR Pathway in Pancreatic Ductal Adenocarcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 811-828.	2.3	19

#	Article	IF	CITATIONS
37	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	23.0	158
38	Continued Efforts on Nanomaterialâ€Environmental Health and Safety Is Critical to Maintain Sustainable Growth of Nanoindustry. Small, 2020, 16, e2000603.	5.2	33
39	Mechanistic Differences in Cell Death Responses to Metalâ€Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. Small, 2020, 16, e2000528.	5.2	41
40	High-Throughput Single Cell Analysis Reveals the Heterogeneity of QDots-Induced Response in Macrophages. Environmental Science and Technology Letters, 2020, 7, 337-342.	3.9	2
41	Vincristine-loaded platelets coated with anti-CD41 mAbs: a new macrophage targeting proposal for the treatment of immune thrombocytopenia. Biomaterials Science, 2019, 7, 4568-4577.	2.6	12
42	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
43	Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles. ACS Nano, 2019, 13, 13065-13082.	7.3	47
44	The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Proâ€Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. Small, 2019, 15, e1901642.	5.2	48
45	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	7.3	84
46	Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environmental Science: Nano, 2019, 6, 456-466.	2.2	36
47	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	7.3	1
48	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS Nano, 2019, 13, 4778-4794.	7.3	78
49	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	2.2	65
50	Doxorubicin-Loaded CuS Nanoparticles Conjugated with GFLG: A Novel Drug Delivery System for Lymphoma Treatment. Nano, 2019, 14, 1950013.	0.5	6
51	Comparative Analysis of the Transcriptome of Latent Autoimmune Diabetes in Adult (LADA) Patients from Eastern China. Journal of Diabetes Research, 2019, 2019, 1-9.	1.0	3
52	E-cigarette aerosols induce unfolded protein response in normal human oral keratinocytes. Journal of Cancer, 2019, 10, 6915-6924.	1.2	9
53	Metabolomics profiling of metformin-mediated metabolic reprogramming bypassing AMPKα. Metabolism: Clinical and Experimental, 2019, 91, 18-29.	1.5	30
54	Silver Nanoparticles Compromise Female Embryonic Stem Cell Differentiation through Disturbing X Chromosome Inactivation. ACS Nano, 2019, 13, 2050-2061.	7.3	10

ΤΙΑΝ ΧΙΑ

#	Article	IF	CITATIONS
55	Engineering Protective Polymer Coatings for Liver Microtissues. Chemical Research in Toxicology, 2019, 32, 49-56.	1.7	1
56	Biotransformation and Potential Adverse Effects of Rare Earth Oxide Nanoparticles. , 2019, , 47-63.		1
57	Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. International Journal of Cancer, 2018, 143, 396-407.	2.3	57
58	Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environmental Science & Technology, 2018, 52, 1514-1524.	4.6	36
59	Bioaccumulation of ¹⁴ C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer. Environmental Science & Technology, 2018, 52, 541-549.	4.6	49
60	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano, 2018, 12, 1390-1402.	7.3	221
61	Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Materials, 2018, 10, e458-e458.	3.8	58
62	Upconversion nanoparticle mediated optogenetics for targeted deep brain stimulation. Science Bulletin, 2018, 63, 405-407.	4.3	6
63	Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages <i>versus</i> Apoptosis in Hepatocytes. ACS Nano, 2018, 12, 3836-3852.	7.3	141
64	Correlation between phase separation and rheological behavior in bitumen/SBS/PE blends. RSC Advances, 2018, 8, 41713-41721.	1.7	10
65	Current approaches for safer design of engineered nanomaterials. Ecotoxicology and Environmental Safety, 2018, 166, 294-300.	2.9	25
66	The biotransformation of graphene oxide in lung fluids significantly alters its inherent properties and bioactivities toward immune cells. NPG Asia Materials, 2018, 10, 385-396.	3.8	31
67	Rheology and thermal stability of polymer modified bitumen with coexistence of amorphous phase and crystalline phase. Construction and Building Materials, 2018, 178, 272-279.	3.2	31
68	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	5.2	21
69	Transformation of ¹⁴ C‣abeled Graphene to ¹⁴ CO ₂ in the Shoots of a Rice Plant. Angewandte Chemie, 2018, 130, 9907-9911.	1.6	19
70	Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6097-6111.	1.9	11
71	Safety Concerns of Industrial Engineered Nanomaterials. , 2018, , 1063-1072.		1
72	USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma. Cancer Letters, 2018, 436, 139-148.	3.2	49

#	Article	IF	CITATIONS
73	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	7.3	78
74	Transformation of ¹⁴ C‣abeled Graphene to ¹⁴ CO ₂ in the Shoots of a Rice Plant. Angewandte Chemie - International Edition, 2018, 57, 9759-9763.	7.2	46
75	Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS Nano, 2017, 11, 2637-2651.	7.3	110
76	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	7.3	19
77	Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portalâ€ofâ€Entry. Small, 2017, 13, 1603830.	5.2	23
78	Facilitating Translational Nanomedicine via Predictive Safety Assessment. Molecular Therapy, 2017, 25, 1522-1530.	3.7	31
79	Carbon Nanotubes: Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portalâ€ofâ€Entry (Small 15/2017). Small, 2017, 13, .	5.2	1
80	Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Particle and Fibre Toxicology, 2017, 14, 13.	2.8	61
81	Differential effect of micron- versus nanoscale Ill–V particulates and ionic species on the zebrafish gut. Environmental Science: Nano, 2017, 4, 1350-1364.	2.2	11
82	Enhanced Immune Adjuvant Activity of Aluminum Oxyhydroxide Nanorods through Cationic Surface Functionalization. ACS Applied Materials & Interfaces, 2017, 9, 21697-21705.	4.0	46
83	Safe-by-Design CuO Nanoparticles <i>via</i> Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano, 2017, 11, 501-515.	7.3	107
84	Multifunctional polycationic photosensitizer conjugates with rich hydroxyl groups for versatile water-soluble photodynamic therapy nanoplatforms. Biomaterials, 2017, 117, 77-91.	5.7	88
85	Rücktitelbild: Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification (Angew. Chem. 46/2017). Angewandte Chemie, 2017, 129, 14966-14966.	1.6	1
86	Critical role of immunogenic cell death in cancer therapy. Science Bulletin, 2017, 62, 1427-1429.	4.3	4
87	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. Angewandte Chemie, 2017, 129, 14680-14685.	1.6	22
88	Improved Biocompatibility of Black Phosphorus Nanosheets by Chemical Modification. Angewandte Chemie - International Edition, 2017, 56, 14488-14493.	7.2	143
89	The Genetic Heterogeneity among Different Mouse Strains Impacts the Lung Injury Potential of Multiwalled Carbon Nanotubes. Small, 2017, 13, 1700776.	5.2	11
90	Structure activity relationships of engineered nanomaterials in inducing NLRP3 inflammasome activation and chronic lung fibrosis. NanoImpact, 2017, 6, 99-108.	2.4	44

#	Article	IF	CITATIONS
91	The potential ecological risk of multiwall carbon nanotubes was modified by the radicals resulted from peroxidase-mediated tetrabromobisphenol A reactions. Environmental Pollution, 2017, 220, 264-273.	3.7	6
92	Multifunctional nanotherapeutics for treatment of ocular disease. Annals of Eye Science, 2017, 2, 22-22.	1.1	2
93	Effect of S/B block proportion on the phase behavior and rheology of SBS modified bitumen. Petroleum Science and Technology, 2016, 34, 1867-1871.	0.7	6
94	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and <i>E. coli</i> . ACS Nano, 2016, 10, 6008-6019.	7.3	49
95	A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Journal of Allergy and Clinical Immunology, 2016, 138, 386-396.	1.5	190
96	Effective Codelivery of IncRNA and pDNA by Pullulanâ€Based Nanovectors for Promising Therapy of Hepatocellular Carcinoma. Advanced Functional Materials, 2016, 26, 7314-7325.	7.8	51
97	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	7.3	58
98	Identification and Optimization of Carbon Radicals on Hydrated Graphene Oxide for Ubiquitous Antibacterial Coatings. ACS Nano, 2016, 10, 10966-10980.	7.3	172
99	Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. Nanoscale, 2016, 8, 18070-18086.	2.8	23
100	Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B, 2016, 4, 5496-5509.	2.9	96
101	Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. National Science Review, 2016, 3, 416-429.	4.6	82
102	Nerve Growth Factor-Conjugated Mesoporous Silica Nanoparticles Promote Neuron-Like PC12 Cell Proliferation and Neurite Growth. Journal of Nanoscience and Nanotechnology, 2016, 16, 2390-2393.	0.9	15
103	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
104	<i>A Special Section on</i> Nanodiagnostics and Nanotherapeutics. Journal of Nanoscience and Nanotechnology, 2016, 16, 2109-2110.	0.9	0
105	Viscoelastic phase behavior in SBS modified bitumen studied by morphology evolution and viscoelasticity change. Construction and Building Materials, 2016, 105, 589-594.	3.2	41
106	Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS ONE, 2016, 11, e0154447.	1.1	52
107	New insights into disruption of iron homeostasis by environmental pollutants. Journal of Environmental Sciences, 2015, 34, 256-258.	3.2	6
108	A Bayesian regression tree approach to identify the effect of nanoparticles' properties on toxicity profiles. Annals of Applied Statistics, 2015, 9, .	0.5	14

#	Article	IF	CITATIONS
109	Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice. Particle and Fibre Toxicology, 2015, 13, 42.	2.8	26
110	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	5.2	105
111	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	7.3	107
112	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small, 2015, 11, 2087-2097.	5.2	149
113	Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating. ACS Nano, 2015, 9, 3293-3306.	7.3	130
114	Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. ACS Nano, 2015, 9, 9357-9372.	7.3	108
115	Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?. ACS Nano, 2015, 9, 5627-5630.	7.3	91
116	Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale, 2015, 7, 7470-7481.	2.8	109
117	Mammalian Cells Exhibit a Range of Sensitivities to Silver Nanoparticles that are Partially Explicable by Variations in Antioxidant Defense and Metallothionein Expression. Small, 2015, 11, 3797-3805.	5.2	42
118	Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano, 2015, 9, 10498-10515.	7.3	347
119	Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles <i>via</i> an <i>in Vitro</i> Dosimetry Model. ACS Nano, 2015, 9, 9303-9313.	7.3	65
120	Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano, 2015, 9, 9573-9584.	7.3	164
121	Implications of the Differential Toxicological Effects of Ill–V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries. ACS Nano, 2015, 9, 12011-12025.	7.3	15
122	Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale, 2015, 7, 736-746.	2.8	154
123	Nanoparticle-Membrane Interactions Studied with Lipid Bilayer Arrays. Biophysical Journal, 2014, 106, 415a.	0.2	2
124	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	5.2	242
125	Aspect Ratio Plays a Role in the Hazard Potential of CeO ₂ Nanoparticles in Mouse Lung and Zebrafish Gastrointestinal Tract. ACS Nano, 2014, 8, 4450-4464.	7.3	98
126	PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co ₃ O ₄ <i>p</i> -Type Semiconductor in Cells and the Lung. Journal of the American Chemical Society, 2014, 136, 6406-6420.	6.6	136

#	Article	IF	CITATIONS
127	Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano, 2014, 8, 1771-1783.	7.3	212
128	Association rule mining of cellular responses induced by metal and metal oxide nanoparticles. Analyst, The, 2014, 139, 943-953.	1.7	26
129	Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1β Producing Inflammasome. ACS Nano, 2014, 8, 10280-10292.	7.3	142
130	Response of MicroRNAs to <i>In Vitro</i> Treatment with Graphene Oxide. ACS Nano, 2014, 8, 2100-2110.	7.3	91
131	Nanosilver Incurs an Adaptive Shunt of Energy Metabolism Mode to Glycolysis in Tumor and Nontumor Cells. ACS Nano, 2014, 8, 5813-5825.	7.3	92
132	Aluminum-Based Nano-adjuvants. , 2014, , 1-6.		0
133	Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions. Annals of Clinical and Laboratory Science, 2014, 44, 134-44.	0.2	9
134	Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening. Accounts of Chemical Research, 2013, 46, 607-621.	7.6	501
135	Hierarchical Rank Aggregation with Applications to Nanotoxicology. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 159-177.	0.7	13
136	Engineering an Effective Immune Adjuvant by Designed Control of Shape and Crystallinity of Aluminum Oxyhydroxide Nanoparticles. ACS Nano, 2013, 7, 10834-10849.	7.3	192
137	Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 994-1005.	7.3	525
138	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	7.6	627
139	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	7.3	265
140	Silver Nanoparticles Induced RNA Polymerase-Silver Binding and RNA Transcription Inhibition in Erythroid Progenitor Cells. ACS Nano, 2013, 7, 4171-4186.	7.3	128
141	Zebrafish Highâ€Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1. Small, 2013, 9, 1776-1785.	5.2	112
142	Metal Oxides: Zebrafish High-Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1 (Small 9-10/2013). Small, 2013, 9, 1775-1775.	5.2	2
143	Implementation of a Multidisciplinary Approach to Solve Complex Nano EHS Problems by the UC Center for the Environmental Implications of Nanotechnology. Small, 2013, 9, 1428-1443.	5.2	32
144	NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small, 2013, 9, 1595-1607.	5.2	166

#	Article	IF	CITATIONS
145	Development of structure–activity relationship for metal oxide nanoparticles. Nanoscale, 2013, 5, 5644.	2.8	120
146	Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano, 2013, 7, 5732-5745.	7.3	229
147	Interlaboratory Evaluation of <i>in Vitro</i> Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 683-690.	2.8	176
148	Predictive toxicological paradigm and high throughput approach for toxicity screening of engineered nanomaterials. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 4.	0.1	9
149	Molecular Imaging in Tracking Tumor Stem-Like Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-13.	3.0	21
150	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	4.5	159
151	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	6.6	372
152	Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of Engineered Nano-Materials. PLoS ONE, 2012, 7, e35014.	1.1	50
153	Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. ACS Nano, 2012, 6, 4349-4368.	7.3	718
154	Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano, 2012, 6, 3745-3759.	7.3	318
155	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	7.3	323
156	The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells. ACS Nano, 2012, 6, 4921-4930.	7.3	146
157	Differential Expression of Syndecan-1 Mediates Cationic Nanoparticle Toxicity in Undifferentiated versus Differentiated Normal Human Bronchial Epithelial Cells. ACS Nano, 2011, 5, 2756-2769.	7.3	86
158	No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale, 2011, 3, 1345.	2.8	153
159	Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano, 2011, 5, 4434-4447.	7.3	330
160	Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms. ACS Nano, 2011, 5, 13-20.	7.3	145
161	Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano, 2011, 5, 9772-9787.	7.3	178
162	Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano, 2011, 5, 4131-4144.	7.3	446

#	Article	IF	CITATIONS
163	Role of Fe Doping in Tuning the Band Gap of TiO ₂ for the Photo-Oxidation-Induced Cytotoxicity Paradigm. Journal of the American Chemical Society, 2011, 133, 11270-11278.	6.6	346
164	Use of a High-Throughput Screening Approach Coupled with <i>In Vivo</i> Zebrafish Embryo Screening To Develop Hazard Ranking for Engineered Nanomaterials. ACS Nano, 2011, 5, 1805-1817.	7.3	306
165	High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles. ACS Nano, 2011, 5, 7284-7295.	7.3	176
166	Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano, 2011, 5, 1223-1235.	7.3	341
167	Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. Journal of Nanoparticle Research, 2011, 13, 2675-2687.	0.8	83
168	Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano, 2010, 4, 15-29.	7.3	464
169	Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano, 2010, 4, 7241-7252.	7.3	151
170	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	6.6	550
171	Dispersion and Stability Optimization of TiO ₂ Nanoparticles in Cell Culture Media. Environmental Science & Technology, 2010, 44, 7309-7314.	4.6	288
172	Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano, 2010, 4, 4539-4550.	7.3	817
173	Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 2009, 8, 543-557.	13.3	6,046
174	Potential Health Impact of Nanoparticles. Annual Review of Public Health, 2009, 30, 137-150.	7.6	374
175	A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials. ACS Nano, 2009, 3, 1620-1627.	7.3	303
176	Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.	7.3	817
177	Reply to "Assessing the Safety of Nanomaterials by Genomic Approach Could Be Another Alternative― ACS Nano, 2009, 3, 3830-3831.	7.3	4
178	Comparative Toxicity of C ₆₀ Aggregates toward Mammalian Cells: Role of Tetrahydrofuran (THF) Decomposition. Environmental Science & Technology, 2009, 43, 6378-6384.	4.6	61
179	Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano, 2008, 2, 2121-2134.	7.3	2,145
180	Particles slip cell security. Nature Materials, 2008, 7, 519-520.	13.3	43

#	Article	IF	CITATIONS
181	The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 2008, 44, 1689-1699.	1.3	780
182	Cationic Polystyrene Nanosphere Toxicity Depends on Cell-Specific Endocytic and Mitochondrial Injury Pathways. ACS Nano, 2008, 2, 85-96.	7.3	584
183	Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano, 2008, 2, 889-896.	7.3	1,758
184	Coordinated Nanobiosensors for Enhanced Detection: Integration of Three Dimensional Structures to Toxicological Applications. ECS Transactions, 2007, 3, 115-126.	0.3	2
185	Inhibitory effects of nitric oxide on invasion of human cancer cells. Cancer Letters, 2007, 257, 274-282.	3.2	27
186	Part II: coordinated biosensors – development of enhanced nanobiosensors for biological and medical applications. Nanomedicine, 2007, 2, 599-614.	1.7	25
187	Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells. Nanobiotechnology, 2007, 3, 89-95.	1.2	175
188	Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Frontiers in Bioscience - Landmark, 2007, 12, 1238.	3.0	108
189	Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Letters, 2006, 6, 1794-1807.	4.5	1,675
190	Toxic Potential of Materials at the Nanolevel. Science, 2006, 311, 622-627.	6.0	7,944
191	The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clinics in Occupational and Environmental Medicine, 2006, 5, 817-36.	0.5	62
192	Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity. Environmental Health Perspectives, 2004, 112, 1347-1358.	2.8	369
193	Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology, 2003, 194, 19-33.	2.0	124
194	Bid BH3 peptide, but not its mutant form G94E, induces per-meability transition pore opening and cytochrome c release in vitro. Science Bulletin, 2002, 47, 553.	1.7	4
195	A study on permeability transition pore opening and cytochromecrelease from mitochondria, induced by caspase-3 in vitro. FEBS Letters, 2002, 510, 62-66.	1.3	53
196	Mechanism of mitochondrial respiratory control in cas- pase-3 induced positive feedback loop in apoptosis. Science Bulletin, 2002, 47, 480.	1.7	2