

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7239416/publications.pdf Version: 2024-02-01

Eel Ol

#	Article	IF	CITATIONS
1	Selective conversion of syngas to light olefins. Science, 2016, 351, 1065-1068.	12.6	1,063
2	Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie - International Edition, 2010, 49, 3572-3597.	13.8	587
3	Advances and challenges in laminar flame experiments and implications for combustion chemistry. Progress in Energy and Combustion Science, 2014, 43, 36-67.	31.2	434
4	An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156, 1413-1426.	5.2	359
5	Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute, 2013, 34, 33-63.	3.9	340
6	Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 2021, 4, 242-250.	34.4	308
7	Enols Are Common Intermediates in Hydrocarbon Oxidation. Science, 2005, 308, 1887-1889.	12.6	306
8	Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. Journal of Chemical Physics, 2003, 119, 8356-8365.	3.0	266
9	Recent Applications of Synchrotron VUV Photoionization Mass Spectrometry: Insight into Combustion Chemistry. Accounts of Chemical Research, 2010, 43, 68-78.	15.6	209
10	Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source. Review of Scientific Instruments, 2005, 76, 094102.	1.3	208
11	Combustion of butanol isomers – A detailed molecular beam mass spectrometry investigation of their flame chemistry. Combustion and Flame, 2011, 158, 2-15.	5.2	196
12	ldentification of combustion intermediates in isomeric fuel-rich premixed butanol–oxygen flames at low pressure. Combustion and Flame, 2007, 148, 198-209.	5.2	189
13	Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels, 2009, 23, 1473-1485.	5.1	184
14	Experimental Confirmation of the Lowâ€Temperature Oxidation Scheme of Alkanes. Angewandte Chemie - International Edition, 2010, 49, 3169-3172.	13.8	180
15	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame, 2015, 162, 3-21.	5.2	177
16	lsomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Review of Scientific Instruments, 2006, 77, 084101.	1.3	171
17	Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 2012, 159, 3455-3471.	5.2	165
18	Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science, 2018, 9, 4662-4670.	7.4	150

#	Article	IF	CITATIONS
19	The vacuum ultraviolet beamline/endstations atÂNSRL dedicated to combustion research. Journal of Synchrotron Radiation, 2016, 23, 1035-1045.	2.4	149
20	Identification and Chemistry of C4H3and C4H5Isomers in Fuel-Rich Flames. Journal of Physical Chemistry A, 2006, 110, 3670-3678.	2.5	143
21	An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 2012, 159, 905-917.	5.2	141
22	An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proceedings of the Combustion Institute, 2007, 31, 555-563.	3.9	131
23	Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 2014, 161, 84-100.	5.2	126
24	Experimental and Kinetic Modeling Study of <i>n</i> Butanol Pyrolysis and Combustion. Energy & Fuels, 2012, 26, 5550-5568.	5.1	123
25	Experimental and kinetic modeling study of the low- and intermediate-temperature oxidation of dimethyl ether. Combustion and Flame, 2015, 162, 1113-1125.	5.2	120
26	Determination of absolute photoionization crossâ€sections of aromatics and aromatic derivatives. Rapid Communications in Mass Spectrometry, 2009, 23, 3994-4002.	1.5	114
27	An experimental and kinetic investigation of premixed furan/oxygen/argon flames. Combustion and Flame, 2011, 158, 756-773.	5.2	113
28	Investigation on chemical structures of premixed toluene flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 593-600.	3.9	113
29	An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combustion and Flame, 2009, 156, 2071-2083.	5.2	111
30	Kinetic modeling study of toluene pyrolysis at low pressure. Combustion and Flame, 2010, 157, 1686-1697.	5.2	111
31	An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 2012, 159, 2243-2253.	5.2	110
32	Detailed product analysis during the low temperature oxidation of n-butane. Physical Chemistry Chemical Physics, 2011, 13, 296-308.	2.8	108
33	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame, 2015, 162, 22-40.	5.2	108
34	Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame, 2014, 161, 2496-2511.	5.2	103
35	A comprehensive experimental study of low-pressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization. Combustion and Flame, 2008, 152, 336-359.	5.2	87
36	Experimental and kinetic modeling study of pyrolysis and oxidation of n-decane. Combustion and Flame, 2014, 161, 1701-1715.	5.2	87

#	Article	IF	CITATIONS
37	Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames. Combustion and Flame, 2012, 159, 2324-2335.	5.2	85
38	Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons: Part I. Intermediate identification and mass spectrometric analysis. Combustion and Flame, 2010, 157, 143-154.	5.2	83
39	Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy. Scientific Reports, 2013, 3, 1625.	3.3	75
40	Pyrolysis of Methyl <i>tert</i> -Butyl Ether (MTBE). 1. Experimental Study with Molecular-Beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. Journal of Physical Chemistry A, 2008, 112, 10487-10494.	2.5	74
41	Gas-Phase Reaction Network of Li/MgO-Catalyzed Oxidative Coupling of Methane and Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2019, 9, 2514-2520.	11.2	71
42	An experimental and kinetic modeling study of a premixed nitromethane flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 311-318.	3.9	70
43	Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. Combustion and Flame, 2015, 162, 2873-2892.	5.2	70
44	Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame, 2015, 162, 1692-1711.	5.2	67
45	Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes. Proceedings of the Combustion Institute, 2009, 32, 1293-1300.	3.9	66
46	Newâ€Phased Metastable V ₂ O ₃ Porous Urchinlike Micronanostructures: Facile Synthesis and Application in Aqueous Lithium Ion Batteries. Chemistry - A European Journal, 2011, 17, 384-391.	3.3	66
47	Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation. Proceedings of the Combustion Institute, 2017, 36, 333-342.	3.9	66
48	A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. Combustion and Flame, 2016, 166, 255-265.	5.2	65
49	New experimental evidences about the formation and consumption of ketohydroperoxides. Proceedings of the Combustion Institute, 2011, 33, 325-331.	3.9	64
50	Experimental and Modeling Investigation of <i>n</i> -Decane Pyrolysis at Supercritical Pressures. Energy & Fuels, 2014, 28, 6019-6028.	5.1	62
51	Online Study on the Pyrolysis of Polypropylene over the HZSM-5 Zeolite with Photoionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2015, 29, 1090-1098.	5.1	62
52	Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Proceedings of the Combustion Institute, 2013, 34, 2347-2354.	3.9	61
53	Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model. Combustion and Flame, 2016, 168, 53-64.	5.2	61
54	Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion. Combustion and Flame, 2013, 160, 1939-1957.	5.2	58

#	Article	IF	CITATIONS
55	Online Analysis of Volatile Products from Bituminous Coal Pyrolysis with Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2013, 27, 694-701.	5.1	58
56	Study of the Low Temperature Oxidation of Propane. Journal of Physical Chemistry A, 2012, 116, 12214-12228.	2.5	57
57	Determination of absolute photoionization cross-sections of oxygenated hydrocarbons. International Journal of Mass Spectrometry, 2010, 293, 28-33.	1.5	56
58	Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 617-624.	3.9	56
59	Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure. Fuel, 2018, 232, 632-638.	6.4	56
60	An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 407-414.	3.9	55
61	Online Analysis of Biomass Pyrolysis Tar by Photoionization Mass Spectrometry. Energy & Fuels, 2016, 30, 1555-1563.	5.1	55
62	Revealing the chemistry of biomass pyrolysis by means of tunable synchrotron photoionisation-mass spectrometry. RSC Advances, 2013, 3, 4786.	3.6	54
63	A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi. Combustion and Flame, 2014, 161, 711-724.	5.2	54
64	Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CVD. Catalysis Communications, 2009, 11, 118-122.	3.3	53
65	Direct Confined‧pace Combustion Forming Monoclinic Vanadium Dioxides. Angewandte Chemie - International Edition, 2010, 49, 134-137.	13.8	53
66	Determination of absolute photoionization crossâ€sections of alkanes and <i>cyclo</i> â€alkanes. Rapid Communications in Mass Spectrometry, 2010, 24, 1335-1342.	1.5	53
67	Experimental and kinetic modeling study of tetralin pyrolysis at low pressure. Proceedings of the Combustion Institute, 2013, 34, 1739-1748.	3.9	53
68	An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combustion and Flame, 2007, 151, 347-365.	5.2	52
69	Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios. Proceedings of the Combustion Institute, 2015, 35, 855-862.	3.9	52
70	Low-temperature gas-phase oxidation of diethyl ether: Fuel reactivity and fuel-specific products. Proceedings of the Combustion Institute, 2019, 37, 511-519.	3.9	52
71	An experimental study of the rich premixed ethylbenzene flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 647-655.	3.9	51
72	Identification of isomeric C5H3 and C5H5 free radicals in flame with tunable synchrotron photoionization. Chemical Physics Letters, 2006, 423, 321-326.	2.6	50

#	Article	IF	CITATIONS
73	Pyrolysis of <i>n</i> -Heptane: Experimental and Theoretical Study. Journal of Physical Chemistry A, 2011, 115, 1593-1601.	2.5	50
74	An experimental and modeling study of methyl propanoate pyrolysis at low pressure. Combustion and Flame, 2013, 160, 1958-1966.	5.2	50
75	Products from the Oxidation of Linear Isomers of Hexene. Journal of Physical Chemistry A, 2014, 118, 673-683.	2.5	50
76	Experimental and kinetic modeling study of diethyl ether flames. Proceedings of the Combustion Institute, 2017, 36, 1165-1173.	3.9	50
77	Formation and Fate of Formaldehyde in Methanolâ€ŧoâ€Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie - International Edition, 2020, 59, 4873-4878.	13.8	50
78	Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure. Proceedings of the Combustion Institute, 2015, 35, 367-375.	3.9	47
79	Experimental and kinetic modeling study of styrene combustion. Combustion and Flame, 2015, 162, 1868-1883.	5.2	47
80	Pyrolysis of <i>n</i> -Butylbenzene at Various Pressures: Influence of Long Side-Chain Structure on Alkylbenzene Pyrolysis. Energy & Fuels, 2017, 31, 14270-14279.	5.1	47
81	Modification of photoionization mass spectrometer with synchrotron radiation as ionization source. Review of Scientific Instruments, 2005, 76, 126108.	1.3	46
82	Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	46
83	Experimental and kinetic modeling study of premixed o-xylene flames. Proceedings of the Combustion Institute, 2015, 35, 1745-1752.	3.9	45
84	Online Study on the Catalytic Pyrolysis of Bituminous Coal over HUSY and HZSM-5 with Photoionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2016, 30, 1598-1604.	5.1	45
85	Nickel and Nickel-Based Nanoalloy Thin Films from Alcohol-Assisted Chemical Vapor Deposition. Chemistry of Materials, 2010, 22, 92-100.	6.7	44
86	Kinetics of Decomposition and Isomerization of Methylcyclohexane: Starting Point for Studying Monoalkylated Cyclohexanes Combustion. Energy & Fuels, 2013, 27, 1679-1687.	5.1	44
87	Experimental Investigation of the Low Temperature Oxidation of the Five Isomers of Hexane. Journal of Physical Chemistry A, 2014, 118, 5573-5594.	2.5	44
88	Acetaldehyde oxidation at low and intermediate temperatures: An experimental and kinetic modeling investigation. Combustion and Flame, 2018, 191, 431-441.	5.2	43
89	Experimental and theoretical investigation on cellular instability of methanol/air flames. Fuel, 2018, 225, 95-103.	6.4	42
90	An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure. Proceedings of the Combustion Institute, 2013, 34, 1785-1793.	3.9	41

#	Article	IF	CITATIONS
91	Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry. TrAC - Trends in Analytical Chemistry, 2011, 30, 1400-1409.	11.4	40
92	An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols. Proceedings of the Combustion Institute, 2013, 34, 779-786.	3.9	40
93	Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combustion and Flame, 2014, 161, 657-670.	5.2	40
94	A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion. Combustion and Flame, 2017, 186, 178-192.	5.2	40
95	Photodissociation of Ethylene Sulfide at 193 nm:Â A Photofragment Translational Spectroscopy Study with VUV Synchrotron Radiation and ab Initio Calculations. Journal of the American Chemical Society, 2001, 123, 148-161.	13.7	39
96	A thermal decomposition study of polymers by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 1269-1274.	1.5	39
97	Competing isomeric product channels in the 193 nm photodissociation of 2-chloropropene and in the unimolecular dissociation of the 2-propenyl radical. Journal of Chemical Physics, 2001, 114, 4505.	3.0	38
98	Lean Premixed Gasoline/Oxygen Flame Studied with Tunable Synchrotron Vacuum UV Photoionization. Energy & Fuels, 2006, 20, 1505-1513.	5.1	38
99	Experimental and theoretical study of the dissociation energies D0(H2Nî—,H) and D0(H2N+î—,H) and other related quantities. Chemical Physics Letters, 1995, 234, 450-454.	2.6	37
100	Ultraviolet photodissociation of furan probed by tunable synchrotron radiation. Journal of Chemical Physics, 1999, 111, 100-107.	3.0	37
101	C–Cl bond fission, HCl elimination, and secondary radical decomposition in the 193 nm photodissociation of allyl chloride. Journal of Chemical Physics, 2002, 116, 2763-2775.	3.0	37
102	The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline. International Journal of Mass Spectrometry, 2007, 263, 30-37.	1.5	36
103	Determination of absolute photoionization cross-sections of nitrogenous compounds. International Journal of Mass Spectrometry, 2011, 303, 137-146.	1.5	36
104	A study of low-pressure premixed ethylene flame with and without ethanol using photoionization mass spectrometry and modeling. Proceedings of the Combustion Institute, 2011, 33, 569-576.	3.9	36
105	Influence of the biofuel isomers diethyl ether and n-butanol on flame structure and pollutant formation in premixed n-butane flames. Combustion and Flame, 2017, 175, 47-59.	5.2	36
106	Harnessing peak transmission around symptom onset for non-pharmaceutical intervention and containment of the COVID-19 pandemic. Nature Communications, 2021, 12, 1147.	12.8	36
107	An Experimental and Theoretical Study of Pyrrole Pyrolysis with Tunable Synchrotron VUV Photoionization and Molecular-Beam Mass Spectrometry. Journal of Physical Chemistry A, 2009, 113, 5397-5405.	2.5	35
108	Experimental and kinetic modeling study of n-pentanol pyrolysis and combustion. Combustion and Flame, 2015, 162, 3277-3287.	5.2	35

#	Article	IF	CITATIONS
109	Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. Bioresource Technology, 2019, 275, 130-137.	9.6	34
110	Experimental and kinetic modeling investigation on anisole pyrolysis: Implications on phenoxy and cyclopentadienyl chemistry. Combustion and Flame, 2019, 201, 187-199.	5.2	34
111	A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Acetone. Journal of Physical Chemistry A, 2005, 109, 4231-4241.	2.5	33
112	Evidence of a Phenolic Pool as a Key Intermediate for Zeolite atalyzed Lignin Pyrolysis. Angewandte Chemie - International Edition, 2021, 60, 2643-2647.	13.8	33
113	Interstellar Enols Are Formed in Plasma Discharges of Alcohols. Astrophysical Journal, 2008, 676, 416-419.	4.5	32
114	Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames. Proceedings of the Combustion Institute, 2013, 34, 1811-1818.	3.9	32
115	Identification of Combustion Intermediates in Low-Pressure Premixed Pyridine/Oxygen/Argon Flames. Journal of Physical Chemistry A, 2008, 112, 13549-13555.	2.5	31
116	Pyrolysis Study on Solid Fuels: From Conventional Analytical Methods to Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2016, 30, 1534-1543.	5.1	31
117	On-line photoionization mass spectrometric study of lignin and lignite co-pyrolysis: Insight into the synergetic effect. Journal of Analytical and Applied Pyrolysis, 2019, 137, 285-292.	5.5	31
118	Experimental and kinetic modeling investigation on ethylcyclohexane low-temperature oxidation in a jet-stirred reactor. Combustion and Flame, 2020, 214, 211-223.	5.2	31
119	Experimental and theoretical studies of the photoionization and dissociative photoionizations of vinyl chloride. International Journal of Mass Spectrometry and Ion Processes, 1995, 148, 179-189.	1.8	30
120	Photofragment translational spectroscopy of 1,2-butadiene at 193 nm. Journal of Chemical Physics, 2001, 115, 8359-8365.	3.0	30
121	Theoretical Studies on the Unimolecular Decomposition of Ethylene Glycol. Journal of Physical Chemistry A, 2012, 116, 55-63.	2.5	30
122	Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame. Combustion and Flame, 2019, 204, 85-102.	5.2	30
123	Experimental and kinetic modeling study of tert-butanol combustion at low pressure. Energy, 2012, 43, 94-102.	8.8	29
124	An experimental and kinetic modeling study of premixed nitroethane flames at low pressure. Proceedings of the Combustion Institute, 2013, 34, 617-624.	3.9	29
125	Real-time monitoring biomass pyrolysis via on-line photoionization ultrahigh-resolution mass spectrometry. Fuel, 2019, 235, 962-971.	6.4	29
126	Fragment ontrollable mass spectrometric analysis of organic compounds with an infrared laser desorption/tunable vacuum ultraviolet photoionization technique. Rapid Communications in Mass Spectrometry, 2008, 22, 1619-1623.	1.5	28

#	Article	IF	CITATIONS
127	Experimental and kinetic modeling study of i-butanol pyrolysis and combustion. Combustion and Flame, 2014, 161, 1955-1971.	5.2	28
128	Toward real-time volumetric tomography for combustion diagnostics via dimension reduction. Optics Letters, 2018, 43, 1107.	3.3	28
129	Evidence of triplet ethylene produced from photodissociation of ethylene sulfide. Journal of Chemical Physics, 2000, 112, 10707-10710.	3.0	27
130	Electrospray/VUV single-photon ionization mass spectrometry for the analysis of organic compounds. Journal of the American Society for Mass Spectrometry, 2009, 20, 430-434.	2.8	27
131	Using sensitivity entropy in experimental design for uncertainty minimization of combustion kinetic models. Proceedings of the Combustion Institute, 2017, 36, 709-716.	3.9	27
132	A thermal decomposition study of pine wood under ambient pressure using thermogravimetry combined with synchrotron vacuum ultraviolet photoionization mass spectrometry. Proceedings of the Combustion Institute, 2017, 36, 2217-2224.	3.9	26
133	Probing the low-temperature chemistry of di-n-butyl ether: Detection of previously unobserved intermediates. Combustion and Flame, 2019, 210, 9-24.	5.2	26
134	An Experimental Study of Rich Premixed Gasoline/O2/Ar Flame with Tunable Synchrotron Vacuum Ultraviolet Photoionization. Energy & Fuels, 2007, 21, 1931-1941.	5.1	25
135	Photoionization studies on various quinones by an infrared laser desorption/tunable VUV photoionization TOF mass spectrometry. Journal of Mass Spectrometry, 2008, 43, 1701-1710.	1.6	25
136	Ab initio kinetics on low temperature oxidation of iso-pentane: The first oxygen addition. Combustion and Flame, 2018, 190, 119-132.	5.2	25
137	Experimental and kinetic modeling study of methyl butanoate and methyl butanoate/methanol flames at different equivalence ratios and C/O ratios. Combustion and Flame, 2012, 159, 44-54.	5.2	24
138	Experimental and theoretical study of the photoionization and dissociative photoionizations of dichlorodifluoromethane. International Journal of Mass Spectrometry and Ion Processes, 1997, 161, 151-159.	1.8	23
139	IDENTIFYING COMBUSTION INTERMEDIATES VIA TUNABLE VACUUM ULTRAVIOLET PHOTOIONIZATION MASS SPECTROMETRY. Combustion Science and Technology, 2005, 177, 2021-2037.	2.3	23
140	Conformation-Specific Pathways of β-Alanine: A Vacuum Ultraviolet Photoionization and Theoretical Study. Journal of Physical Chemistry A, 2009, 113, 5838-5845.	2.5	22
141	Intramolecular hydrogen transfer in the ionization process of α-alanine. Physical Chemistry Chemical Physics, 2009, 11, 1189.	2.8	22
142	Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices. Analytica Chimica Acta, 2015, 891, 203-210.	5.4	22
143	A comprehensive experimental and kinetic modeling study of tert-butanol combustion. Combustion and Flame, 2016, 169, 154-170.	5.2	22
144	In Situ Atmospheric Pressure Photoionization Mass Spectrometric Monitoring of Initial Pyrolysis Products of Biomass in Real Time. Analytical Chemistry, 2020, 92, 603-606.	6.5	22

#	Article	IF	CITATIONS
145	The Ultraviolet Photochemistry of Phenylacetylene and the Enthalpy of Formation of 1,3,5-Hexatriyne. Journal of the American Chemical Society, 2001, 123, 671-676.	13.7	21
146	Note: A novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry. Review of Scientific Instruments, 2014, 85, 046110.	1.3	21
147	Interlocking Mechanism between Molecular Gears Attached to Surfaces. ACS Nano, 2018, 12, 3020-3029.	14.6	21
148	Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. Combustion and Flame, 2021, 228, 351-363.	5.2	21
149	193-nm photodissociation of acryloyl chloride to probe the unimolecular dissociation of CH2CHCO radicals and CH2CCO. Journal of Chemical Physics, 2004, 120, 4223-4230.	3.0	20
150	Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations. International Reviews in Physical Chemistry, 2010, 29, 369-401.	2.3	20
151	Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with 2-butanol. Proceedings of the Combustion Institute, 2015, 35, 863-871.	3.9	20
152	Experimental and kinetic modeling study of premixed n-butylbenzene flames. Proceedings of the Combustion Institute, 2017, 36, 815-823.	3.9	20
153	The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 2515-2520.	1.5	19
154	Pyrolysis of Methyl tert-Butyl Ether (MTBE). 2. Theoretical Study of Decomposition Pathways. Journal of Physical Chemistry A, 2008, 112, 10495-10501.	2.5	19
155	Unimolecular Decomposition of Ethyl Hydroperoxide: Ab Initio/Riceâ^'Ramspergerâ^'Kasselâ^'Marcus Theoretical Prediction of Rate Constants. Journal of Physical Chemistry A, 2011, 115, 602-611.	2.5	19
156	On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 7097-7105.	3.7	19
157	Study of the Formation of the First Aromatic Rings in the Pyrolysis of Cyclopentene. Journal of Physical Chemistry A, 2016, 120, 668-682.	2.5	19
158	Vacuum ultraviolet photoionization and dissociative photoionization of W(CO)6. Journal of Chemical Physics, 1997, 107, 10391-10398.	3.0	18
159	Internal Energy Dependence of the H + Allene/H + Propyne Product Branching from the Unimolecular Dissociation of 2-Propenyl Radicals. Journal of Physical Chemistry A, 2000, 104, 11261-11264.	2.5	18
160	Photoionization Mass Spectrometric and Kinetic Modeling of Low-pressure Pyrolysis of Benzene. Chinese Journal of Chemical Physics, 2013, 26, 245-251.	1.3	18
161	Experimental and kinetic modeling investigation on decalin pyrolysis at low to atmospheric pressures. Combustion and Flame, 2016, 167, 228-237.	5.2	18
162	Low-temperature chemistry triggered by probe cooling in a low-pressure premixed flame. Combustion and Flame, 2019, 204, 260-267.	5.2	18

#	Article	IF	CITATIONS
163	Interlocking Molecular Gear Chains Built on Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 2611-2619.	4.6	17
164	Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry Letters, 2021, 12, 8109-8114.	4.6	17
165	Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy. Optics Express, 2018, 26, 31983.	3.4	17
166	A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Ethylene Oxide in the Photon Energy Region of 10â^'40 eV. Journal of Physical Chemistry A, 1999, 103, 4155-4161.	2.5	16
167	Fluorescent pyrene-centered starburst oligocarbazoles with excellent thermal and electrochemical stabilities. Organic and Biomolecular Chemistry, 2011, 9, 6913.	2.8	16
168	Experimental and theoretical studies on decomposition of pyrrolidine. Proceedings of the Combustion Institute, 2011, 33, 415-423.	3.9	16
169	Understanding benzene formation pathways in pyrolysis of two C6H10 isomers: Cyclohexene and 1,5-hexadiene. Proceedings of the Combustion Institute, 2019, 37, 1091-1098.	3.9	16
170	Investigation on the intrinsic thermoacoustic instability of a lean-premixed swirl combustor with an acoustic liner. Proceedings of the Combustion Institute, 2021, 38, 6095-6103.	3.9	16
171	A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Propylene Oxide in the Photon Energy Region of 10â^²40 eV. Journal of Physical Chemistry A, 1999, 103, 8179-8186.	2.5	15
172	CVD of Conducting Ultrathin Copper Films. Journal of the Electrochemical Society, 2009, 156, D452.	2.9	15
173	Predictive kinetics on the formation and decomposition of ethylbenzene. Proceedings of the Combustion Institute, 2017, 36, 533-542.	3.9	15
174	Challenges and perspectives of combustion chemistry research. Science China Chemistry, 2017, 60, 1391-1401.	8.2	15
175	How Does the Flexibility of Molecules Affect the Performance of Molecular Rotors?. Journal of Physical Chemistry C, 2018, 122, 25067-25074.	3.1	15
176	Experimental and kinetic modeling study on flow reactor pyrolysis of iso-pentanol: Understanding of iso-pentanol pyrolysis chemistry and fuel isomeric effects of pentanol. Fuel, 2019, 257, 116039.	6.4	15
177	Insights into the interaction kinetics between propene and NOx at moderate temperatures with experimental and modeling methods. Proceedings of the Combustion Institute, 2021, 38, 795-803.	3.9	15
178	Experimental and kinetic modeling study of the homogeneous chemistry of NH3 and NOx with CH4 at the diluted conditions. Combustion and Flame, 2022, 243, 112015.	5.2	15
179	Mass resolved photoionization/fragmentation studies of Cr(CO)6 at photon energies of â^1⁄48–40 eV. Journal of Chemical Physics, 1997, 107, 4911-4918.	3.0	14
180	Dissociation Channels of the 1-Propenyl Radical and Its Photolytic Precursorcis-1-Bromopropeneâ€. Journal of Physical Chemistry A, 2002, 106, 10831-10842.	2.5	14

#	Article	IF	CITATIONS
181	Vacuum Ultraviolet Photofragmentation of Sarcosine: Photoionization Mass Spectrometric and Theoretical Insights. Journal of Physical Chemistry A, 2010, 114, 3411-3417.	2.5	14
182	Pyrolysis of 2-methyl-1-butanol at low and atmospheric pressures: Mass spectrometry and modeling studies. Proceedings of the Combustion Institute, 2015, 35, 409-417.	3.9	14
183	Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices. Journal of the American Society for Mass Spectrometry, 2016, 27, 1597-1605.	2.8	14
184	Experimental and kinetic modeling study of laminar premixed decalin flames. Proceedings of the Combustion Institute, 2017, 36, 1193-1202.	3.9	14
185	10  kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing. Applied Optics, 2019, 58, C112.	1.8	14
186	Multi-functional switch effect in interlocking molecular rotators-on-graphene systems using electric fields. Journal of Materials Chemistry C, 2022, 10, 5292-5302.	5.5	14
187	Infrared laser desorption/vacuum ultraviolet photoionization mass spectrometry of petroleum saturates: a new experimental approach for the analysis of heavy oils. Rapid Communications in Mass Spectrometry, 2008, 22, 4025-4028.	1.5	13
188	Low temperature plasma diagnostics with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Review of Scientific Instruments, 2008, 79, 103504.	1.3	13
189	Note: Laser-induced acoustic desorption/synchrotron vacuum ultraviolet photoionization mass spectrometry for analysis of fragile compounds and heavy oils. Review of Scientific Instruments, 2012, 83, 026105.	1.3	13
190	Theoretical Studies on the Unimolecular Decomposition of Propanediols and Glycerol. Journal of Physical Chemistry A, 2012, 116, 4457-4465.	2.5	13
191	Intramolecular torque, an indicator of the internal rotation direction of rotor molecules and similar systems. Physical Chemistry Chemical Physics, 2016, 18, 29665-29672.	2.8	13
192	Donor/Acceptor Properties of Aromatic Molecules in Complex Metal–Molecule Interfaces. Langmuir, 2017, 33, 451-458.	3.5	13
193	Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with iso-butanol. Proceedings of the Combustion Institute, 2017, 36, 1259-1267.	3.9	13
194	Pyrolysis of butane-2,3‑dione from low to high pressures: Implications for methyl-related growth chemistry. Combustion and Flame, 2019, 200, 69-81.	5.2	13
195	Study of the thermal decomposition mechanism of FOX-7 by molecular dynamics simulation and online photoionization mass spectrometry. RSC Advances, 2020, 10, 21147-21157.	3.6	13
196	The absolute cross sections of photoabsorption, photodissociation, and photoionization of the group VIB metal hexacarbonyls at 300–1600 ŠJournal of Chemical Physics, 1997, 106, 9474-9482.	3.0	12
197	Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. Chinese Journal of Chemical Physics, 2009, 22, 204-209.	1.3	12
198	Dynamics of periodically-excited vortices in swirling flames. Proceedings of the Combustion Institute, 2021, 38, 6183-6191.	3.9	12

#	Article	IF	CITATIONS
199	Gas-phase hydrodeoxygenation of bio-oil model compound over nitrogen-doped carbon-supported palladium catalyst. Proceedings of the Combustion Institute, 2021, 38, 4345-4353.	3.9	12
200	193 nm Photodissociation of Thiophene Probed Using Synchrotron Radiation. Journal of Physical Chemistry A, 1999, 103, 8351-8358.	2.5	11
201	Characterization of nitrogen-containing radical products from the photodissociation of trimethylamine using photoionization detection. Journal of Chemical Physics, 2000, 113, 3088-3097.	3.0	11
202	Study on combustion of gasoline/MTBE in laminar flame with synchrotron radiation. Chemosphere, 2007, 67, 2065-2071.	8.2	11
203	VUV dissociative photoionization of CHF2Cl. Journal of Molecular Structure, 2007, 826, 192-197.	3.6	11
204	Analysis of Petroleum Aromatics by Laser-Induced Acoustic Desorption/Tunable Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2013, 27, 2010-2017.	5.1	11
205	Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1269-1293.	2.8	11
206	Exclusive production of excited-state sulfur (1D) atoms from 193 nm photolysis of thietane. Chemical Physics Letters, 2002, 357, 204-208.	2.6	10
207	Catalytic oxidation of methane over PdO in wire microcalorimetry. Combustion and Flame, 2013, 160, 149-154.	5.2	10
208	Influence of Thermal Treatment of HUSY on Catalytic Pyrolysis of Polypropylene: An Online Photoionization Mass Spectrometric Study. Energy & Fuels, 2016, 30, 5122-5129.	5.1	10
209	Exploring the low-temperature oxidation chemistry of cyclohexane in a jet-stirred reactor: An experimental and kinetic modeling study. Chinese Journal of Chemical Physics, 2018, 31, 537-546.	1.3	10
210	Pressure-sensitive paint with imprinted pattern for full-field endoscopic measurement using a color camera. Sensors and Actuators A: Physical, 2019, 290, 28-35.	4.1	10
211	Investigation on spray and combustion characteristics of boron/ethanol nanofuel utilizing 50ÅkHz repetition rate high-speed laser measurements. Fuel, 2021, 287, 119562.	6.4	10
212	High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation. Applied Optics, 2019, 58, C68.	1.8	10
213	Evolution characteristics of 3D vortex structures in stratified swirling flames studied by dual-plane stereoscopic PIV. Combustion and Flame, 2022, 237, 111874.	5.2	10
214	Experimental and Theoretical Studies of the VUV Photoionization of Chloropropylene Oxide. Journal of Physical Chemistry A, 2001, 105, 2973-2979.	2.5	9
215	The photodissociation dynamics of cyclic sulfides probed with tunable undulator radiation. Journal of Electron Spectroscopy and Related Phenomena, 2001, 119, 127-145.	1.7	9
216	A 193nm laser photofragmentation time-of-flight mass spectrometric study of chloroiodomethane. Journal of Chemical Physics, 2005, 123, 174316.	3.0	9

#	Article	IF	CITATIONS
217	VUV photonâ€induced ionization/dissociation of antipyrine and propyphenazone: mass spectrometric and theoretical insights. Journal of Mass Spectrometry, 2010, 45, 734-739.	1.6	9
218	An experimental and theoretical study of pyrrolidine pyrolysis at low pressure. Proceedings of the Combustion Institute, 2013, 34, 641-648.	3.9	9
219	Product Identification and Mass Spectrometric Analysis of <i>n</i> Butane and <i>i</i> Butane Pyrolysis at Low Pressure. Chinese Journal of Chemical Physics, 2013, 26, 151-156.	1.3	9
220	Experimental and kinetic modeling investigation of rich premixed toluene flames doped with <i>n</i> -butanol. Physical Chemistry Chemical Physics, 2018, 20, 10628-10636.	2.8	9
221	Exploring the low-temperature oxidation chemistry of 1-butene and i-butene triggered by dimethyl ether. Proceedings of the Combustion Institute, 2021, 38, 289-298.	3.9	9
222	Photoionization studies of some small molecules. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 483-485.	1.7	8
223	Dissociative Photoionization of Mo(CO)6 in the Photon Energy Range of 8â^'40 eV. Journal of Physical Chemistry A, 1997, 101, 7194-7199.	2.5	8
224	Dissociation Channels of the 1-Propenyl Radical and Its Photolytic Precursorcis-1-Bromopropeneâ€,‡. Journal of Physical Chemistry A, 2002, 106, 10965-10967.	2.5	8
225	A Gaussian-3 Study of the Photodissociation Channels of Propylene Sulfide. Journal of Physical Chemistry A, 2002, 106, 11025-11028.	2.5	8
226	High-resolution rotational analysis of HDS: 2ν23, ν2+2ν23, 3ν23, and ν2+3ν23 bands. Journal of Molecular Spectroscopy, 2005, 232, 279-290.	1.2	8
227	Identification and Chemistry of Phenylnitrene in Premixed Pyridine/Oxygen/Argon Flame with Tunable Synchrotron Photoionization. Chinese Journal of Chemical Physics, 2007, 20, 425-430.	1.3	8
228	A Novel Metalâ€free and Highly Efficient Hydroarylation of Styrenes Catalyzed by Molecular Iodine. Chinese Journal of Chemistry, 2008, 26, 321-327.	4.9	8
229	Pressure-dependent branching in initial decomposition of gamma-valerolactone: a quantum chemical/RRKM study. RSC Advances, 2018, 8, 12975-12983.	3.6	8
230	Investigation on the Flame Front and Flow Field in Acoustically Excited Swirling Flames with and without Confinement. Combustion Science and Technology, 2022, 194, 130-143.	2.3	8
231	Probing the fuel-specific intermediates in the low-temperature oxidation of 1-heptene and modeling interpretation. Proceedings of the Combustion Institute, 2021, 38, 385-394.	3.9	8
232	In Situ Reactor-Integrated Electrospray Ionization Mass Spectrometry for Heterogeneous Catalytic Reactions and Its Application in the Process Analysis of High-Pressure Liquid-Phase Lignin Depolymerization. Analytical Chemistry, 2021, 93, 12987-12994.	6.5	8
233	Effects of acoustic liner on thermoacoustic instabilities in a premixed swirl combustor. Aerospace Science and Technology, 2021, 118, 107070.	4.8	8
234	Exploring the interaction kinetics of butene isomers and NOx at low temperatures and diluted conditions. Combustion and Flame, 2021, 233, 111557.	5.2	8

#	Article	lF	CITATIONS
235	Effects of swirler position on flame response and combustion instabilities. Chinese Journal of Aeronautics, 2022, 35, 345-355.	5.3	8
236	UV Photoionization Study of the Ethyl Radical1. Chemical Research in Chinese Universities, 2006, 22, 375-378.	2.6	7
237	Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Ethylenediamine. Journal of Physical Chemistry A, 2006, 110, 9089-9098.	2.5	7
238	Dissociative Photoionization Mechanism of 1,8-Dihydroxyanthraquinone: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 10977-10984.	2.5	7
239	A wire microcalorimetric study of catalytic ignition of methane–air mixtures over palladium oxide. Proceedings of the Combustion Institute, 2011, 33, 1819-1825.	3.9	7
240	Investigation of the effect of ethanol additives on the structure of low-pressure ethylene flames by photoionization mass spectrometry. Combustion, Explosion and Shock Waves, 2012, 48, 609-619.	0.8	7
241	Relationship of gain and phase in the transfer function of swirling flames. Proceedings of the Combustion Institute, 2021, 38, 6173-6182.	3.9	7
242	Insights into the Decomposition and Oxidation Chemistry of <i>p</i> -Xylene in Laminar Premixed Flames. Journal of Physical Chemistry A, 2021, 125, 3189-3197.	2.5	7
243	Decomposition of swirling flame transfer function in the complex space. Combustion and Flame, 2021, 228, 29-41.	5.2	7
244	Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629.	5.2	7
245	Photodissociation of Propylene Sulfide at 193 nm:Â A Photofragment Translational Spectroscopy Study with VUV Synchrotron Radiation. Journal of Physical Chemistry A, 2002, 106, 11017-11024.	2.5	6
246	THEORETICAL STUDIES ON PHOTOIONIZATION OF GUANINE TAUTOMERS AND INTERCONVERSION OF CATION RADICALS. Journal of Theoretical and Computational Chemistry, 2009, 08, 1103-1115.	1.8	6
247	On-Line Photoionization Mass Spectrometric Study on Behavior of Ammonia Poisoning on H-Form Ultra Stable Y Zeolite for Catalytic Pyrolysis of Polypropylene. Chinese Journal of Chemical Physics, 2016, 29, 681-686.	1.3	6
248	Intramolecular Torque Study of a Molecular Rotation Stimulated by Electron Injection and Extraction. Journal of Physical Chemistry A, 2018, 122, 7614-7619.	2.5	6
249	Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy. Proceedings of the Combustion Institute, 2019, 37, 1589-1596.	3.9	6
250	Unraveling chemical structure of laminar premixed tetralin flames at low pressure with photoionization mass spectrometry and kinetic modeling. International Journal of Chemical Kinetics, 2021, 53, 154-163.	1.6	6
251	20 kHz dual-plane stereo-PIV measurements on a swirling flame using a two-legged burst-mode laser. Optics Letters, 2020, 45, 5756.	3.3	6
252	Improved laser absorption spectroscopy measurements of flame temperature via a collisional line-mixing model for CO2 spectra near 4.17µm. Applied Physics B: Lasers and Optics, 2022, 128, .	2.2	6

#	Article	IF	CITATIONS
253	Experimental Study of Premixed Stoichiometric Ethylene/Oxygen/Argon Flame. Chinese Journal of Chemical Physics, 2006, 19, 379-385.	1.3	5
254	VUV Photoionization and Dissociation of Tyramine and Dopamine: the Joint Experimental and Theoretical Studies. Chinese Journal of Chemical Physics, 2012, 25, 11-18.	1.3	5
255	Fragment motion in motor molecules: basic concepts and application to intra-molecular rotations. Physical Chemistry Chemical Physics, 2018, 20, 21487-21497.	2.8	5
256	Evidence of a Phenolic Pool as a Key Intermediate for Zeolite atalyzed Lignin Pyrolysis. Angewandte Chemie, 2021, 133, 2675-2679.	2.0	5
257	The effects of injector size on the dynamics and instabilities of lean premixed swirling flame. Aerospace Science and Technology, 2022, 123, 107463.	4.8	5
258	Direct mass spectrometric observation and reaction mechanism of gas-phase initial intermediates during CL-20 decomposition. Combustion and Flame, 2022, 241, 112095.	5.2	5
259	Experimental investigation of the helical mode in a stratified swirling flame. Combustion and Flame, 2022, 244, 112268.	5.2	5
260	Investigation on 1-heptene/air laminar flame propagation under elevated pressures. Chinese Journal of Chemical Physics, 2019, 32, 99-106.	1.3	4
261	Vortex formation and frequency tuning of periodically-excited jet diffusion flames. Proceedings of the Combustion Institute, 2021, 38, 2067-2074.	3.9	4
262	Three-dimensional concentration field imaging in a swirling flame via endoscopic volumetric laser-induced fluorescence at 10-kHz-rate. Science China Technological Sciences, 2020, 63, 2163-2168.	4.0	4
263	Theoretical Study of the AlEt3-Promoted Tandem Reductive Rearrangement of Epoxides. Chinese Journal of Chemical Physics, 2008, 21, 547-554.	1.3	3
264	Photoionization and Dissociative Photoionization Study of Cholesterol by IR Laser Desorption/Tunable Synchrotron VUV Photoionization Mass Spectrometry. Chinese Journal of Chemical Physics, 2009, 22, 129-133.	1.3	3
265	Experimental Study of Capacitive RF c-C4F8 Discharge with Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Plasma Chemistry and Plasma Processing, 2010, 30, 391-400.	2.4	3
266	Photoionization Mass Spectrometry: A Useful Method to Evaluate the Pyrolysis Process of Glycoside Flavor Precursor. Journal of the Chinese Chemical Society, 2011, 58, 290-295.	1.4	3
267	Online Study on the Catalytic Hydrotreatment of Guaiacol in Liquid Phase by Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2021, 35, 13863-13870.	5.1	3
268	Exploring NH3 and NOx Interaction Chemistry With CH4 and C2H4 at Moderate Temperatures and Various Pressures. Frontiers in Energy Research, 2022, 10, .	2.3	3
269	Dissociation Pathway Analysis of Thymine under Low Energy VUV Photon Excitation. Chinese Journal of Chemical Physics, 2011, 24, 275-283.	1.3	2
270	Synchrotron vacuum ultraviolet (VUV) photo-induced fragmentation of cyclic dipeptides radical cations. Amino Acids, 2012, 43, 279-287.	2.7	2

#	Article	IF	CITATIONS
271	Experimental and theoretical studies of pyrolysis of chrysophanol and its derivatives. Journal of Analytical and Applied Pyrolysis, 2013, 100, 237-244.	5.5	2
272	Construction and performance of combustion beamline at NSRL. AIP Conference Proceedings, 2016, , .	0.4	2
273	N-Doped Carbon–Silica Composite Confined Pd Nanoparticles for Abatement of Methane Emission From Automobiles. Topics in Catalysis, 2019, 62, 356-367.	2.8	2
274	Formation and Fate of Formaldehyde in Methanolâ€ŧoâ€Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie, 2020, 132, 4903-4908.	2.0	2
275	Pd encapsulated by hollow silica spheres for enhanced total oxidation of methane in the presence of water. Catalysis Communications, 2021, 149, 106185.	3.3	2
276	Imaging of Polar and Nonpolar Lipids Using Desorption Electrospray Ionization/Post-photoionization Mass Spectrometry. Methods in Molecular Biology, 2021, 2306, 285-298.	0.9	2
277	Single camera 20  kHz two-color formaldehyde PLIF thermometry using a dual-wavelength-switching burst mode laser. Optics Letters, 2021, 46, 5149.	3.3	2
278	Suppression of Combustion Instabilities in a Premixed Swirl Combustor With Acoustic Liner. , 2019, , .		2
279	VUV threshold photoelectron spectroscopy of the C2H3Cl molecule. Science Bulletin, 1998, 43, 36-39.	1.7	1
280	The study of photoionization and fragmentation of CHF2Cl: experiment and quantum chemical calculation. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 191-194.	1.7	1
281	VUV Photoionization Study of the Allyl Radical from Premixed Gasoline/Oxygen Flame. Chinese Journal of Chemical Physics, 2006, 19, 25-28.	1.3	1
282	Experimental and Theoretical Study on Pyrolysis of Isopsoralen. Chinese Journal of Chemical Physics, 2012, 25, 249-253.	1.3	1
283	Vacuum ultraviolet photofragmentation of octadecane: photoionization mass spectrometric and theoretical investigation. Applied Petrochemical Research, 2015, 5, 305-311.	1.3	1
284	Exploration of the pyrolysis chemistry of 1,1-diethoxybutane: A flow reactor and kinetic modeling study. Fuel, 2019, 236, 437-444.	6.4	1
285	Online Investigation of Lignin Depolymerization via Reactor-integrated Electrospray Ionization High-resolution Mass Spectrometry. Applications in Energy and Combustion Science, 2022, , 100069.	1.5	1
286	Experimental investigations on coherent flow structures in acoustically excited swirling flames using temporally-separated dual-plane Stereo-PIV. Experimental Thermal and Fluid Science, 2022, 136, 110673.	2.7	1
287	Observation of the (CNCH2CHCl)+ ion and investigation of its structure. Chemical Physics Letters, 1995, 233, 347-352.	2.6	0
288	Threshold photoelectron-photoion coincidence and its application to photoionization of molecules using synchrotron radiation. Science Bulletin, 1997, 42, 809-814.	1.7	0

#	Article	IF	CITATIONS
289	Identifying combustion intermediates in premixed MTBE/gasoline/oxygen flame probed via synchrotron radiation. Frontiers of Energy and Power Engineering in China, 2007, 1, 79-84.	0.4	0
290	CVD in Weakly Rarefied Rotating Disk Flows. Chemical Vapor Deposition, 2009, 15, 274-280.	1.3	0
291	Applying an in-situ calibration method of spectral line shape to determine flame temperature of methane and ethylene spherically expanding flames. Combustion and Flame, 2022, 237, 111743.	5.2	0
292	Combustion Chemistry Study with Synchrotron VUV Photoionization Mass Spectrometry. , 2016, , .		0
293	The Application of Diagnostic Techniques Utilizing Ultra-high Repetition Rate Laser in Typical Industrial Reacting Flows. , 2018, , .		0
294	Virtual Special Issue of Recent Advances in Analysis of Fuels and Products by Advanced Mass Spectrometry. Energy & Fuels, 2022, 36, 1151-1154.	5.1	0
295	Extensional study of optical flow enhanced hybrid PIV method for dual-plane stereoscopic PIV measurement. Measurement Science and Technology, 0, , .	2.6	0