Clara B Ocampo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7238050/publications.pdf

Version: 2024-02-01

759233 713466 21 619 12 21 h-index citations g-index papers 23 23 23 783 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integration of phlebotomine ecological niche modelling, and mapping of cutaneous leishmaniasis surveillance data, to identify areas at risk of under-estimation. Acta Tropica, 2021, 224, 106122.	2.0	3
2	Transcriptome comparison of dengue-susceptible and -resistant field derived strains of Colombian Aedes aegypti using RNA-sequencing. Memorias Do Instituto Oswaldo Cruz, 2021, 116, e200547.	1.6	2
3	Culturable microbial composition in the midgut of Aedes aegypti strains with different susceptibility to dengue-2 virus infection. Symbiosis, 2020, 80, 85-93.	2.3	3
4	Land use in relation to composition and abundance of phlebotomines (Diptera: Psychodidae) in five foci of domiciliary transmission of cutaneous leishmaniasis in the Andean region of Colombia. Acta Tropica, 2020, 203, 105315.	2.0	9
5	VECTOS: An Integrated System for Monitoring Risk Factors Associated With Urban Arbovirus Transmission. Global Health, Science and Practice, 2019, 7, 128-137.	1.7	9
6	Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Tropica, 2019, 191, 146-154.	2.0	36
7	Immune responseâ€related genes associated to blocking midgut dengue virus infection in <i>Aedes aegypti</i> strains that differ in susceptibility. Insect Science, 2019, 26, 635-648.	3.0	20
8	The Composition of Midgut Bacteria in <i>Aedes aegypti</i> (Diptera: Culicidae) That Are Naturally Susceptible or Refractory to Dengue Viruses. Journal of Insect Science, 2018, 18, .	1.5	8
9	Vector competence and innate immune responses to dengue virus infection in selected laboratory and fieldâ€collected <i>Stegomyia aegypti</i> (= <i>Aedes aegypti</i>). Medical and Veterinary Entomology, 2017, 31, 312-319.	1.5	17
10	Changing paradigms in control: considering the spatial heterogeneity of dengue transmission. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2017, 41, e16.	1.1	10
11	First report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia. Acta Tropica, 2015, 148, 191-196.	2.0	15
12	Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. Acta Tropica, 2014, 132, 15-22.	2.0	42
13	Selection of Aedes aegypti (Diptera: Culicidae) strains that are susceptible or refractory to Dengue-2 virus. Canadian Entomologist, 2013, 145, 273-282.	0.8	11
14	Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus. PLoS ONE, 2013, 8, e61187.	2.5	65
15	Phlebotomine Vector Ecology in the Domestic Transmission of American Cutaneous Leishmaniasis in Chaparral, Colombia. American Journal of Tropical Medicine and Hygiene, 2011, 85, 847-856.	1.4	45
16	Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 2011, 118, 37-44.	2.0	111
17	Environmental Risk Factors for the Incidence of American Cutaneous Leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima). American Journal of Tropical Medicine and Hygiene, 2010, 82, 243-250.	1.4	61
18	Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, <i>Aedes aegypti </i> , Infected with Dengue-2 Virus. Journal of Insect Science, 2010, 10, 1-23.	1.5	44

#	Article	IF	CITATION
19	Evaluation of community-based strategies for Aedes aegypti control inside houses. Biomedica, 2009, 29, 282-97.	0.7	9
20	POPULATION DYNAMICS OF AEDES AEGYPTI FROM A DENGUE HYPERENDEMIC URBAN SETTING IN COLOMBIA. American Journal of Tropical Medicine and Hygiene, 2004, 71, 506-513.	1.4	67
21	Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. American Journal of Tropical Medicine and Hygiene, 2004, 71, 506-13.	1.4	24