
Clara B Ocampo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7238050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 2011, 118, 37-44.	2.0	111
2	POPULATION DYNAMICS OF AEDES AEGYPTI FROM A DENGUE HYPERENDEMIC URBAN SETTING IN COLOMBIA. American Journal of Tropical Medicine and Hygiene, 2004, 71, 506-513.	1.4	67
3	Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus. PLoS ONE, 2013, 8, e61187.	2.5	65
4	Environmental Risk Factors for the Incidence of American Cutaneous Leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima). American Journal of Tropical Medicine and Hygiene, 2010, 82, 243-250.	1.4	61
5	Phlebotomine Vector Ecology in the Domestic Transmission of American Cutaneous Leishmaniasis in Chaparral, Colombia. American Journal of Tropical Medicine and Hygiene, 2011, 85, 847-856.	1.4	45
6	Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, <i>Aedes aegypti</i> , Infected with Dengue-2 Virus. Journal of Insect Science, 2010, 10, 1-23.	1.5	44
7	Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. Acta Tropica, 2014, 132, 15-22.	2.0	42
8	Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Tropica, 2019, 191, 146-154.	2.0	36
9	Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. American Journal of Tropical Medicine and Hygiene, 2004, 71, 506-13.	1.4	24
10	Immune responseâ€related genes associated to blocking midgut dengue virus infection in <i>Aedes aegypti</i> strains that differ in susceptibility. Insect Science, 2019, 26, 635-648.	3.0	20
11	Vector competence and innate immune responses to dengue virus infection in selected laboratory and fieldâ€collected <i>Stegomyia aegypti</i> (= <i>Aedes aegypti</i>). Medical and Veterinary Entomology, 2017, 31, 312-319.	1.5	17
12	First report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia. Acta Tropica, 2015, 148, 191-196.	2.0	15
13	Selection of Aedes aegypti (Diptera: Culicidae) strains that are susceptible or refractory to Dengue-2 virus. Canadian Entomologist, 2013, 145, 273-282.	0.8	11
14	Changing paradigms in control: considering the spatial heterogeneity of dengue transmission. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2017, 41, e16.	1.1	10
15	VECTOS: An Integrated System for Monitoring Risk Factors Associated With Urban Arbovirus Transmission. Global Health, Science and Practice, 2019, 7, 128-137.	1.7	9
16	Land use in relation to composition and abundance of phlebotomines (Diptera: Psychodidae) in five foci of domiciliary transmission of cutaneous leishmaniasis in the Andean region of Colombia. Acta Tropica, 2020, 203, 105315.	2.0	9
17	Evaluation of community-based strategies for Aedes aegypti control inside houses. Biomedica, 2009, 29, 282-97.	0.7	9
18	The Composition of Midgut Bacteria in <i>Aedes aegypti</i> (Diptera: Culicidae) That Are Naturally Susceptible or Refractory to Dengue Viruses. Journal of Insect Science, 2018, 18, .	1.5	8

#	Article	IF	CITATIONS
19	Culturable microbial composition in the midgut of Aedes aegypti strains with different susceptibility to dengue-2 virus infection. Symbiosis, 2020, 80, 85-93.	2.3	3
20	Integration of phlebotomine ecological niche modelling, and mapping of cutaneous leishmaniasis surveillance data, to identify areas at risk of under-estimation. Acta Tropica, 2021, 224, 106122.	2.0	3
21	Transcriptome comparison of dengue-susceptible and -resistant field derived strains of Colombian Aedes aegypti using RNA-sequencing. Memorias Do Instituto Oswaldo Cruz, 2021, 116, e200547.	1.6	2