Bingsheng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237908/publications.pdf

Version: 2024-02-01

36303 38395 10,001 146 51 95 citations g-index h-index papers 149 149 149 8124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate showed poor penetrability but increased the permeability of blood brain barrier: Evidences from in vitro and in vivo studies. Journal of Hazardous Materials, 2022, 424, 127386.	12.4	6
2	Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. Environmental Pollution, 2022, 296, 118742.	7.5	11
3	Cytotoxicity profiling of decabromodiphenyl ethane to earthworm (Eisenia fetida): Abnormity-recovery-dysregulation physiological pattern reflects the coping mechanism. Science of the Total Environment, 2022, 813, 152607.	8.0	12
4	Effects of nano-TiO2 on the bioavailability and toxicity of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) in developing zebrafish. Chemosphere, 2022, 295, 133862.	8.2	8
5	New evidence for neurobehavioral toxicity of deltamethrin at environmentally relevant levels in zebrafish. Science of the Total Environment, 2022, 822, 153623.	8.0	14
6	Nano-TiO2 Adsorbed Decabromodiphenyl Ethane and Changed Its Bioavailability, Biotransformation and Biotoxicity in Zebrafish Embryos/Larvae. Frontiers in Environmental Science, 2022, 10, .	3.3	3
7	Brominated flame retardants (BFRs) in sediment from a typical e-waste dismantling region in Southern China: Occurrence, spatial distribution, composition profiles, and ecological risks. Science of the Total Environment, 2022, 824, 153813.	8.0	18
8	Endocrine disrupting effects induced by levonorgestrel linked to altered DNA methylation in rare minnow (Gobiocypris rarus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109332.	2.6	0
9	Decabromodiphenyl Ethane Mainly Affected the Muscle Contraction and Reproductive Endocrine System in Female Adult Zebrafish. Environmental Science & Encology, 2022, 56, 470-479.	10.0	27
10	Fate and toxicity of legacy and novel brominated flame retardants in a sediment-water-clam system: Bioaccumulation, elimination, biotransformation and structural damage. Science of the Total Environment, 2022, 840, 156634.	8.0	10
11	Neurotoxicity of tetrabromobisphenol A and SiO2 nanoparticle co-exposure in zebrafish and barrier function of the embryonic chorion. Science of the Total Environment, 2022, 845, 157364.	8.0	11
12	Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environmental Pollution, 2021, 270, 116277.	7.5	19
13	Bioconcentration and developmental neurotoxicity of novel brominated flame retardants, hexabromobenzene and pentabromobenzene in zebrafish. Environmental Pollution, 2021, 268, 115895.	7.5	29
14	Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. Ecotoxicology and Environmental Safety, 2021, 209, 111845.	6.0	20
15	Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. Environmental Science & Echnology, 2021, 55, 6926-6935.	10.0	27
16	In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. Journal of Hazardous Materials, 2021, 409, 124999.	12.4	24
17	Early-life exposure to tris (1,3-dichloro-2-propyl) phosphate caused multigenerational neurodevelopmental toxicity in zebrafish via altering maternal thyroid hormones transfer and epigenetic modifications. Environmental Pollution, 2021, 285, 117471.	7.5	21
18	Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Science of the Total Environment, 2021, 792, 148352.	8.0	88

#	Article	IF	CITATIONS
19	Bioaccumulation, elimination and metabolism in earthworms and microbial indices responses after exposure to decabromodiphenyl ethane in a soil-earthworm-microbe system. Environmental Pollution, 2021, 289, 117965.	7.5	20
20	Characteristics of legacy and novel brominated flame retardants in water and sediment surrounding two e-waste dismantling regions in Taizhou, eastern China. Science of the Total Environment, 2021, 794, 148744.	8.0	37
21	Bis(2-ethylhexyl)-tetrabromophthalate induces zebrafish obesity by altering the brain-gut axis and intestinal microbial composition. Environmental Pollution, 2021, 290, 118127.	7.5	10
22	Disturbances in Microbial and Metabolic Communication across the Gut–Liver Axis Induced by a Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. Environmental Science & Environmental & E	10.0	40
23	Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification. Environmental Science & E	10.0	43
24	Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. Journal of Hazardous Materials, 2020, 381, 120995.	12.4	13
25	Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China. Journal of Hazardous Materials, 2020, 382, 121045.	12.4	36
26	Early-life exposure to the organophosphorus flame-retardant tris (1,3-dichloro-2-propyl) phosphate induces delayed neurotoxicity associated with DNA methylation in adult zebrafish. Environment International, 2020, 134, 105293.	10.0	42
27	Embryonic exposure to pentabromobenzene inhibited the inflation of posterior swim bladder in zebrafish larvae. Environmental Pollution, 2020, 259, 113923.	7.5	7
28	Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. Environmental Pollution, 2020, 266, 115284.	7.5	9
29	Evaluation and mechanistic study of chlordecone-induced thyroid disruption: Based on in vivo, in vitro and in silico assays. Science of the Total Environment, 2020, 716, 136987.	8.0	3
30	Bioconcentration of 2,4,6-tribromophenol (TBP) and thyroid endocrine disruption in zebrafish larvae. Ecotoxicology and Environmental Safety, 2020, 206, 111207.	6.0	21
31	Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae. Chemosphere, 2020, 249, 126536.	8.2	20
32	Unexpected Observations: Probiotic Administration Greatly Aggravates the Reproductive Toxicity of Perfluorobutanesulfonate in Zebrafish. Chemical Research in Toxicology, 2020, 33, 1605-1608.	3.3	10
33	Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage. Environmental Pollution, 2020, 265, 114924.	7.5	19
34	Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. Chemosphere, 2020, 256, 127169.	8.2	12
35	Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environmental Science & Environmental Sc	10.0	64
36	The genome of the marine rotifer Brachionus koreanus sheds light on the antioxidative defense system in response to 2-ethyl-phenanthrene and piperonyl butoxide. Aquatic Toxicology, 2020, 221, 105443.	4.0	21

#	Article	IF	CITATIONS
37	Nano-TiO2 enhanced bioaccumulation and developmental neurotoxicity of bisphenol a in zebrafish larvae. Environmental Research, 2020, 187, 109682.	7.5	29
38	Bioconcentration, depuration and toxicity of Pb in the presence of titanium dioxide nanoparticles in zebrafish larvae. Aquatic Toxicology, 2019, 214, 105257.	4.0	10
39	Perfluorobutanesulfonate Exposure Skews Sex Ratio in Fish and Transgenerationally Impairs Reproduction. Environmental Science & Echnology, 2019, 53, 8389-8397.	10.0	61
40	Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish. Environmental Pollution, 2019, 255, 113357.	7.5	25
41	Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. Environmental Science & Environ	10.0	22
42	Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae. Aquatic Toxicology, 2019, 214, 105236.	4.0	24
43	Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos. Chemosphere, 2019, 233, 579-589.	8.2	30
44	Bioconcentration, Biotransformation, and Thyroid Endocrine Disruption of Decabromodiphenyl Ethane (Dbdpe), A Novel Brominated Flame Retardant, in Zebrafish Larvae. Environmental Science & Environmental Science & Technology, 2019, 53, 8437-8446.	10.0	98
45	Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae. Ecotoxicology and Environmental Safety, 2019, 179, 119-126.	6.0	42
46	Chronic exposure to environmental levels of cis-bifenthrin: Enantioselectivity and reproductive effects on zebrafish (Danio rerio). Environmental Pollution, 2019, 251, 175-184.	7.5	27
47	Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology, 2019, 210, 139-147.	4.0	49
48	Photodegradation of novel brominated flame retardants (NBFRs) in a liquid system: Kinetics and photoproducts. Chemical Engineering Journal, 2019, 362, 938-946.	12.7	30
49	Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. Science of the Total Environment, 2019, 650, 557-565.	8.0	64
50	The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae. Chemosphere, 2019, 220, 811-817.	8.2	81
51	TiO2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure. Chemosphere, 2019, 217, 732-741.	8.2	24
52	Variation in microbial community structure in surface seawater from Pearl River Delta: Discerning the influencing factors. Science of the Total Environment, 2019, 660, 136-144.	8.0	49
53	Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. Environmental Pollution, 2019, 245, 218-225.	7. 5	52
54	Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae. Chemosphere, 2018, 197, 353-361.	8.2	69

#	Article	IF	Citations
55	Dysregulation of Intestinal Health by Environmental Pollutants: Involvement of the Estrogen Receptor and Aryl Hydrocarbon Receptor. Environmental Science & Environmental Science & 2018, 52, 2323-2330.	10.0	78
56	Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environmental Pollution, 2018, 234, 307-317.	7.5	136
57	A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae. Aquatic Toxicology, 2018, 199, 46-54.	4.0	41
58	Multigenerational Disruption of the Thyroid Endocrine System in Marine Medaka after a Life-Cycle Exposure to Perfluorobutanesulfonate. Environmental Science & Environmental Science & 2018, 52, 4432-4439.	10.0	69
59	Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida). Chemosphere, 2018, 192, 43-50.	8.2	31
60	The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209). Environmental Pollution, 2018, 237, 784-791.	7.5	43
61	Accumulation of perfluorobutane sulfonate (PFBS) and impairment of visual function in the eyes of marine medaka after a life-cycle exposure. Aquatic Toxicology, 2018, 201, 1-10.	4.0	49
62	Endocrine disruption in Chinese rare minnow (Gobiocypris rarus) after long-term exposure to low environmental concentrations of progestin megestrol acetate. Ecotoxicology and Environmental Safety, 2018, 163, 289-297.	6.0	15
63	Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae. Aquatic Toxicology, 2018, 203, 19-27.	4.0	36
64	Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environmental Pollution, 2018, 240, 17-26.	7.5	96
65	Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. Aquatic Toxicology, 2018, 203, 80-87.	4.0	138
66	Genome-wide identification of 99 autophagy-related (Atg) genes in the monogonont rotifer Brachionus spp. and transcriptional modulation in response to cadmium. Aquatic Toxicology, 2018, 201, 73-82.	4.0	10
67	Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias) Tj ETQq1 1 0.78 (DIM). Aquatic Toxicology, 2017, 183, 135-143.	84314 rgB1 4.0	Overlock
68	The involvement of autophagy and cytoskeletal regulation in TDCIPP-induced SH-SY5Y cell differentiation. NeuroToxicology, 2017, 62, 14-23.	3.0	11
69	Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Environmental Scienc	10.0	393
70	Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food and Chemical Toxicology, 2017, 100, 183-196.	3.6	46
71	Identification of Molecular Targets for 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) in Teleosts: New Insight into Mechanism of Toxicity. Environmental Science & Enp; Technology, 2017, 51, 1840-1847.	10.0	29
72	Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor. Toxicological Sciences, 2017, 160, 205-216.	3.1	24

#	Article	IF	CITATIONS
73	Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. Chemosphere, 2017, 186, 209-217.	8.2	2
74	Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead. Environmental Pollution, 2017, 230, 96-106.	7.5	56
75	Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21, 17-26.	1.0	12
76	Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells. NeuroToxicology, 2017, 58, 1-10.	3.0	35
77	Chronic Exposure of Marine Medaka (<i>Oryzias melastigma</i>) to 4,5-Dichloro-2- <i>n</i> -octyl-4-isothiazolin-3-one (DCOIT) Reveals Its Mechanism of Action in Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis. Environmental Science & Endocrine Disruption via the Hypothalamus-Pituitary-Gonadal-Liver (HPGL) Axis.	10.0	51
78	The binary mixtures of megestrol acetate and 17α-ethynylestradiol adversely affect zebrafish reproduction. Environmental Pollution, 2016, 213, 776-784.	7.5	55
79	High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae. Environmental Pollution, 2016, 214, 324-333.	7.5	33
80	Endocrine Disruption throughout the Hypothalamus–Pituitary–Gonadal–Liver (HPGL) Axis in Marine Medaka (<i>Oryzias melastigma</i>) Chronically Exposed to the Antifouling and Chemopreventive Agent, 3,3′-Diindolylmethane (DIM). Chemical Research in Toxicology, 2016, 29, 1020-1028.	3.3	19
81	Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. Environmental Pollution, 2016, 218, 50-58.	7.5	22
82	Mechanistic study of chlordecone-induced endocrine disruption: Based on an adverse outcome pathway network. Chemosphere, 2016, 161, 372-381.	8.2	8
83	Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (<i>Brachionus koreanus</i>). Environmental Science & Eamp; Technology, 2016, 50, 8849-8857.	10.0	875
84	Adverse Effects, Expression of the <i>Bk-CYP3045C1</i> Gene, and Activation of the ERK Signaling Pathway in the Water Accommodated Fraction-Exposed Rotifer. Environmental Science & Eamp; Technology, 2016, 50, 6025-6035.	10.0	28
85	BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus. Aquatic Toxicology, 2016, 177, 285-294.	4.0	31
86	The neurotoxicity of DEâ€71: effects on neural development and impairment of serotonergic signaling in zebrafish larvae. Journal of Applied Toxicology, 2016, 36, 1605-1613.	2.8	21
87	Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae. Chemosphere, 2016, 144, 1646-1654.	8.2	66
88	Enhanced Bioconcentration of Bisphenol A in the Presence of Nano-TiO ₂ Can Lead to Adverse Reproductive Outcomes in Zebrafish. Environmental Science & Echnology, 2016, 50, 1005-1013.	10.0	119
89	Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae. Aquatic Toxicology, 2015, 161, 117-126.	4.0	93
90	Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Aquatic Toxicology, 2015, 160, 163-171.	4.0	138

#	Article	IF	Citations
91	The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DEâ€₹1 on dopamine in zebrafish larvae. Environmental Toxicology and Chemistry, 2015, 34, 1119-1126.	4.3	41
92	The progestin levonorgestrel affects sex differentiation in zebrafish at environmentally relevant concentrations. Aquatic Toxicology, 2015, 166 , $1-9$.	4.0	57
93	The impact of long term exposure to phthalic acid esters on reproduction in Chinese rare minnow (Gobiocypris rarus). Environmental Pollution, 2015, 203, 130-136.	7.5	19
94	Bioconcentration and Transfer of the Organophorous Flame Retardant 1,3-Dichloro-2-propyl Phosphate Causes Thyroid Endocrine Disruption and Developmental Neurotoxicity in Zebrafish Larvae. Environmental Science & Discussional Scie	10.0	194
95	Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environmental Toxicology and Pharmacology, 2015, 40, 581-586.	4.0	48
96	Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of <i>Daphnia magna</i> at Environmentally Relevant Concentrations. Environmental Science & Emp; Technology, 2015, 49, 12975-12983.	10.0	81
97	Adverse outcome pathway: Framework, application, and challenges in chemical risk assessment. Journal of Environmental Sciences, 2015, 35, 191-193.	6.1	20
98	Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish. Aquatic Toxicology, 2015, 158, 108-115.	4.0	174
99	Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. Journal of Hazardous Materials, 2015, 283, 897-904.	12.4	131
100	Impact of co-exposure with lead and decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. Aquatic Toxicology, 2014, 157, 186-195.	4.0	40
101	Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae. Nanotoxicology, 2014, 8, 196-207.	3.0	99
102	Endocrine disruption and reproduction impairment in zebrafish after longâ€term exposure to DEâ€₹1. Environmental Toxicology and Chemistry, 2014, 33, 1354-1362.	4.3	59
103	The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. Aquatic Toxicology, 2014, 150, 66-72.	4.0	47
104	Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate. Aquatic Toxicology, 2014, 150, 175-181.	4.0	48
105	Thyroid endocrine system disruption by pentachlorophenol: An in vitro and in vivo assay. Aquatic Toxicology, 2013, 142-143, 138-145.	4.0	56
106	Toxicogenomic Responses of Zebrafish Embryos/Larvae to Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) Reveal Possible Molecular Mechanisms of Developmental Toxicity. Environmental Science & Eamp; Technology, 2013, 47, 10574-10582.	10.0	102
107	Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae. Aquatic Toxicology, 2013, 128-129, 147-157.	4.0	125
108	Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae. Environmental Toxicology and Pharmacology, 2013, 35, 13-20.	4.0	29

#	Article	IF	Citations
109	Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic–pituitary–thyroid axis. Aquatic Toxicology, 2013, 126, 207-213.	4.0	244
110	Endocrine disruption by diâ€(2â€ethylhexyl)â€phthalate in Chinese rare minnow (<i>Gobiocypris rarus</i>). Environmental Toxicology and Chemistry, 2013, 32, 1846-1854.	4.3	47
111	Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China. Environmental Health Perspectives, 2013, 121, 839-846.	6.0	211
112	Acute exposure to DEâ€₹1 causes alterations in visual behavior in zebrafish larvae. Environmental Toxicology and Chemistry, 2013, 32, 1370-1375.	4.3	45
113	Prenatal Transfer of Polybrominated Diphenyl Ethers (PBDEs) Results in Developmental Neurotoxicity in Zebrafish Larvae. Environmental Science & Enviro	10.0	147
114	Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2,4-dichlorophenol. Aquatic Toxicology, 2012, 106-107, 173-181.	4.0	104
115	Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquatic Toxicology, 2012, 110-111, 141-148.	4.0	190
116	Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos. Aquatic Toxicology, 2012, 118-119, 108-115.	4.0	20
117	Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio). Aquatic Toxicology, 2012, 120-121, 11-18.	4.0	31
118	Acute exposure to DEâ€₹1: Effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae. Environmental Toxicology and Chemistry, 2012, 31, 2338-2344.	4.3	84
119	Effects of xenoestrogens on the expression of vitellogenin (<i>vtg</i>) and cytochrome P450 aromatase (<i>cyp19a</i>)and <i>b</i>) genes in zebrafish (<i>Danio rerio</i>) larvae. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 960-967.	1.7	31
120	Parental Transfer of Polybrominated Diphenyl Ethers (PBDEs) and Thyroid Endocrine Disruption in Zebrafish. Environmental Science & Eamp; Technology, 2011, 45, 10652-10659.	10.0	183
121	Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas. Environmental Chemistry, 2011, 8, 407.	1.5	27
122	Effects of Prochloraz or Propylthiouracil on the Cross-Talk between the HPG, HPA, and HPT Axes in Zebrafish. Environmental Science & Eamp; Technology, 2011, 45, 769-775.	10.0	113
123	Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. Toxicology, 2011, 282, 146-153.	4.2	33
124	Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicology and Applied Pharmacology, 2010, 243, 87-95.	2.8	97
125	Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade. Toxicology and Applied Pharmacology, 2010, 247, 222-228.	2.8	38
126	The Role of Nrf2 and MAPK Pathways in PFOS-Induced Oxidative Stress in Zebrafish Embryos. Toxicological Sciences, 2010, 115, 391-400.	3.1	253

#	Article	IF	CITATIONS
127	Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol. Aquatic Toxicology, 2010, 96, 70-76.	4.0	74
128	Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic–pituitary–thyroid axis of zebrafish larvae. Aquatic Toxicology, 2010, 97, 226-233.	4.0	221
129	Protein Profiles in Zebrafish (Danio rerio) Embryos Exposed to Perfluorooctane Sulfonate. Toxicological Sciences, 2009, 110, 334-340.	3.1	75
130	Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test. Chemosphere, 2009, 74, 723-729.	8.2	178
131	Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere, 2009, 77, 1010-1018.	8.2	189
132	Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology, 2009, 93, 29-36.	4.0	240
133	Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic–pituitary–gonadal (HPG) axis of zebrafish. Aquatic Toxicology, 2009, 93, 131-137.	4.0	79
134	Combined effects of polyfluorinated and perfluorinated compounds on primary cultured hepatocytes from rare minnow (Gobiocypris rarus) using toxicogenomic analysis. Aquatic Toxicology, 2009, 95, 27-36.	4.0	53
135	Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicology and Applied Pharmacology, 2008, 230, 23-32.	2.8	307
136	DE-71-Induced Apoptosis Involving Intracellular Calcium and the Bax-Mitochondria-Caspase Protease Pathway in Human Neuroblastoma Cells In Vitro. Toxicological Sciences, 2008, 104, 341-351.	3.1	44
137	Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquatic Toxicology, 2007, 82, 135-143.	4.0	289
138	Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquatic Toxicology, 2007, 85, 267-277.	4.0	163
139	EFFECTS OF BROMINATED FLAME RETARDANTS AND BROMINATED DIOXINS ON STEROIDOGENESIS IN H295R HUMAN ADRENOCORTICAL CARCINOMA CELL LINE. Environmental Toxicology and Chemistry, 2007, 26, 764.	4.3	45
140	Exposure of spermatozoa to duroquinone may impair reproduction of the common carp (Cyprinus) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5
141	Primary cultured cells as sensitive in vitro model for assessment of toxicants-comparison to hepatocytes and gill epithelia. Aquatic Toxicology, 2006, 80, 109-118.	4.0	46
142	An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 2005, 202, 25-37.	2.8	35
143	Cultured gill epithelial cells from tilapia (Oreochromis niloticus): a new in vitro assay for toxicants. Aquatic Toxicology, 2005, 71, 61-72.	4.0	7
144	Response of developing cultured freshwater gill epithelia to gradual apical media dilution and hormone supplementation. The Journal of Experimental Zoology, 2004, 301A, 867-881.	1.4	10

#	Article	IF	CITATIONS
145	Cultured gill epithelia as models for the freshwater fish gill. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1566, 72-83.	2.6	87
146	A settlement inhibition assay with cyprid larvae of the barnacle Balanus amphitrite. Chemosphere, 1997, 35, 1867-1874.	8.2	27