Joop H Ter Horst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7237423/publications.pdf

Version: 2024-02-01

136950 118850 4,480 118 32 62 citations h-index g-index papers 120 120 120 3637 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The unexpected dominance of secondary over primary nucleation. Faraday Discussions, 2022, 235, 109-131.	3.2	12
2	Co-crystal Phase Diagram Determination by the Solution Addition Method. Crystal Growth and Design, 2022, 22, 3376-3384.	3.0	2
3	Template-Assisted Crystallization Behavior in Stirred Solutions of the Monoclonal Antibody Anti-CD20: Probability Distributions of Induction Times. Crystal Growth and Design, 2022, 22, 3637-3645.	3.0	3
4	Combining Incompatible Processes for Deracemization of a Praziquantel Derivative under Flow Conditions. Angewandte Chemie - International Edition, 2021, 60, 5279-5282.	13.8	22
5	Manipulating Cocrystal Size and Morphology using a Combination of Temperature Cycling and Additives. Crystal Growth and Design, 2021, 21, 1496-1506.	3.0	7
6	Fungicide Precursor Racemization Kinetics for Deracemization in Complex Systems. European Journal of Organic Chemistry, 2021, 2021, 473-482.	2.4	3
7	Screening Approach for Identifying Cocrystal Types and Resolution Opportunities in Complex Chiral Multicomponent Systems. Crystal Growth and Design, 2021, 21, 112-124.	3.0	16
8	Combining Incompatible Processes for Deracemization of a Praziquantel Derivative under Flow Conditions. Angewandte Chemie, 2021, 133, 5339-5342.	2.0	2
9	Easy-to-Use Osmosis-Based Microfluidic Chip for Protein Crystallization: Application to a Monoclonal Antibody. Crystal Growth and Design, 2021, 21, 3469-3476.	3.0	4
10	Cocrystals of Praziquantel: Discovery by Network-Based Link Prediction. Crystal Growth and Design, 2021, 21, 3428-3437.	3.0	24
11	Extending the SAFT- <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> Mie approach to model benzoic acid, diphenylamine, and mefenamic acid: Solubility prediction and experimental measurement. Fluid Phase Equilibria, 2021, 540, 113002.	2.5	10
12	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie - International Edition, 2021, 60, 20264-20268.	13.8	18
13	Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**. Angewandte Chemie, 2021, 133, 20426-20430.	2.0	1
14	Process modeling and optimization of continuous chiral resolution by integration of membrane and crystallization technologies. Journal of Membrane Science, 2021, 632, 119359.	8.2	7
15	Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology, 2021, 58, 227-241.	3.6	10
16	Impact of Impurities on Crystallization and Product Quality: A Case Study with Paracetamol. Crystals, 2021, 11, 1344.	2.2	8
17	On the Effect of Secondary Nucleation on Deracemization through Temperature Cycles. Chemistry - A European Journal, 2020, 26, 1344-1354.	3.3	18
18	Enabling Mechanical Separation of Enantiomers through Controlled Batchwise Concomitant Crystallization: Digital Design and Experimental Validation. Crystal Growth and Design, 2020, 20, 7726-7741.	3.0	3

#	Article	IF	Citations
19	Effect of Chirality on the Compression of 2-(2-Oxo-1-pyrrolidinyl)butyramide: A Tale of Two Crystals. Crystal Growth and Design, 2020, 20, 6731-6744.	3.0	2
20	On the Aggregation and Nucleation Mechanism of the Monoclonal Antibody Anti-CD20 Near Liquid-Liquid Phase Separation (LLPS). Scientific Reports, 2020, 10, 8902.	3.3	14
21	A Structured Approach To Cope with Impurities during Industrial Crystallization Development. Organic Process Research and Development, 2020, 24, 1443-1456.	2.7	43
22	Assessing Crystallisation Kinetics of Zr Metal–Organic Frameworks through Turbidity Measurements to Inform Rapid Microwaveâ€Assisted Synthesis. Chemistry - A European Journal, 2020, 26, 6910-6918.	3.3	21
23	Resolution Control in a Continuous Preferential Crystallization Process. Organic Process Research and Development, 2019, 23, 2031-2041.	2.7	14
24	Toward Continuous Deracemization via Racemic Crystal Transformation Monitored by in Situ Raman Spectroscopy. Crystal Growth and Design, 2019, 19, 5858-5868.	3.0	12
25	Enabling Direct Preferential Crystallization in a Stable Racemic Compound System. Molecular Pharmaceutics, 2019, 16, 4670-4676.	4.6	17
26	Rapid and scale-independent microfluidic manufacture of liposomes entrapping protein incorporating in-line purification and at-line size monitoring. International Journal of Pharmaceutics, 2019, 556, 68-81.	5.2	81
27	Measuring Secondary Nucleation through Single Crystal Seeding. Crystal Growth and Design, 2019, 19, 421-429.	3.0	16
28	Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations. Molecular Systems Design and Engineering, 2018, 3, 518-549.	3.4	66
29	Particle Breakage Kinetics and Mechanisms in Attrition-Enhanced Deracemization. Crystal Growth and Design, 2018, 18, 3051-3061.	3.0	28
30	Particle Size Distributions and Performance of Preferential Crystallization of <i>Lâ€</i> Asparagine·H ₂ O with Tailorâ€Made Additives. Chemical Engineering and Technology, 2018, 41, 1173-1179.	1.5	7
31	Scaling Up Temperature Cycling-Induced Deracemization by Suppressing Nonstereoselective Processes. Crystal Growth and Design, 2018, 18, 3008-3015.	3.0	19
32	Effect of additives on the preferential crystallization of L-asparagine monohydrate. European Physical Journal: Special Topics, 2017, 226, 823-835.	2.6	16
33	Immobilization of gluten in spherical matrices of foodâ€grade hydrogels. Journal of Food Process Engineering, 2017, 40, e12534.	2.9	1
34	Towards Deracemization in the Absence of Grinding through Crystal Transformation, Ripening, and Racemization. Crystal Growth and Design, 2017, 17, 882-890.	3.0	17
35	Coupling Viedma Ripening with Racemic Crystal Transformations: Mechanism of Deracemization. Crystal Growth and Design, 2017, 17, 4965-4976.	3.0	23
36	Continuous Total Spontaneous Resolution. Crystal Growth and Design, 2017, 17, 4428-4436.	3.0	23

#	Article	IF	Citations
37	9. Solution co-crystallisation and its applications. , 2017, , 205-236.		8
38	Crystal Nucleation of Small Organic Molecules. , 2017, , 317-337.		5
39	Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Crystal Growth and Design, 2016, 16, 3237-3243.	3.0	191
40	Co-crystals of diflunisal and isomeric pyridinecarboxamides $\hat{a} \in \hat{a}$ a thermodynamics and crystal engineering contribution. CrystEngComm, 2016, 18, 4749-4759.	2.6	12
41	Prenucleation Selfâ€Assembly and Chiral Discrimination Mechanisms during Solution Crystallisation of Racemic Diprophylline. Chemistry - A European Journal, 2016, 22, 16103-16112.	3.3	11
42	Deracemization of a Racemic Compound via Its Conglomerate-Forming Salt Using Temperature Cycling. Crystal Growth and Design, 2016 , 16 , 5563 - 5570 .	3.0	63
43	Solid Separation from a Mixed Suspension through Electricâ€Fieldâ€Enhanced Crystallization. Angewandte Chemie - International Edition, 2016, 55, 16088-16091.	13.8	9
44	Attrition-Enhanced Deracemization of NaClO ₃ : Comparison between Ultrasonic and Abrasive Grinding. Crystal Growth and Design, 2015, 15, 5476-5484.	3.0	43
45	Measuring induction times and crystal nucleation rates. Faraday Discussions, 2015, 179, 199-214.	3.2	111
46	Solubility Determination from Clear Points upon Solvent Addition. Organic Process Research and Development, 2015, 19, 1004-1011.	2.7	33
47	Time and space resolved methods: general discussion. Faraday Discussions, 2015, 179, 247-267.	3.2	7
48	Solvent and additive interactions as determinants in the nucleation pathway: general discussion. Faraday Discussions, 2015, 179, 383-420.	3.2	18
49	Nucleation in complex multi-component and multi-phase systems: general discussion. Faraday Discussions, 2015, 179, 503-542.	3.2	6
50	Fundamentals of Industrial Crystallization. , 2015, , 1317-1349.		31
51	A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic dissolution rate. International Journal of Pharmaceutics, 2014, 466, 68-75.	5.2	36
52	Self-Association during Heterogeneous Nucleation onto Well-Defined Templates. Langmuir, 2014, 30, 12368-12375.	3.5	25
53	Template-Induced Nucleation of Isonicotinamide Polymorphs. Crystal Growth and Design, 2014, 14, 1135-1141.	3.0	31
54	Concomitant crystallization for in situ encapsulation of organic materials. Chemical Engineering and Processing: Process Intensification, 2014, 80, 11-20.	3.6	5

#	Article	IF	Citations
55	Polymorphism Control through a Single Nucleation Event. Crystal Growth and Design, 2014, 14, 1493-1499.	3.0	32
56	Revealing the Roles of Desolvation and Molecular Self-Assembly in Crystal Nucleation from Solution: Benzoic and $\langle i \rangle p \langle i \rangle$ -Aminobenzoic Acids. Crystal Growth and Design, 2014, 14, 2689-2696.	3.0	109
57	Nanoparticle generation by intensified solution crystallization using cold plasma. Chemical Engineering and Processing: Process Intensification, 2013, 71, 51-58.	3.6	3
58	Nucleation of Organic Crystalsâ€"A Molecular Perspective. Angewandte Chemie - International Edition, 2013, 52, 2166-2179.	13.8	435
59	Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 1-7.	2.8	18
60	Cold plasma synthesis of high quality organic nanoparticles at atmospheric pressure. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	17
61	Crystal Nucleation Kinetics from Induction Times and Metastable Zone Widths. Crystal Growth and Design, 2013, 13, 2435-2440.	3.0	178
62	Solubility of Fumaric Acid and Its Monosodium Salt. Industrial & Engineering Chemistry Research, 2013, 52, 9454-9460.	3.7	15
63	Microwave-Assisted Evaporative Crystallization of Niflumic Acid for Particle Size Reduction. Crystal Growth and Design, 2013, 13, 4186-4189.	3.0	20
64	On the Reliability of Sensitivity Test Methods for Submicrometer-Sized RDX and HMX Particles. Propellants, Explosives, Pyrotechnics, 2013, 38, 761-769.	1.6	31
65	Electrospray Crystallization for Nanosized Pharmaceuticals with Improved Properties. Crystal Growth and Design, 2012, 12, 3514-3520.	3.0	41
66	Atmospheric Pressure Cold Plasma Synthesis of Submicrometer-Sized Pharmaceuticals with Improved Physicochemical Properties. Crystal Growth and Design, 2012, 12, 5090-5095.	3.0	8
67	Electrochemically Induced Crystallization as a Sustainable Method for Product Recovery of Building Block Chemicals: Techno-Economic Evaluation of Fumaric Acid Separation. Industrial Biotechnology, 2012, 8, 133-151.	0.8	4
68	Isonicotinamide self-association: the link between solvent and polymorph nucleation. Chemical Communications, 2012, 48, 4983.	4.1	119
69	Biofunctionalization and self-interaction chromatography in PDMS microchannels. Biochemical Engineering Journal, 2012, 67, 111-119.	3.6	10
70	Intensified crystallization in complex media: Heuristics for crystallization of platform chemicals. Chemical Engineering Science, 2012, 77, 18-25.	3.8	20
71	Industrial Crystallization: Fundamental Understanding for Challenges Ahead. Chemical Engineering and Technology, 2012, 35, 965-965.	1.5	2
72	A new view on the metastable zone width during cooling crystallization. Chemical Engineering Science, 2012, 72, 10-19.	3.8	127

#	Article	IF	CITATIONS
73	Combination of a Single Primary Nucleation Event and Secondary Nucleation in Crystallization Processes. Crystal Growth and Design, 2011, 11, 1271-1277.	3.0	128
74	Crystal Nucleation Rates from Probability Distributions of Induction Times. Crystal Growth and Design, 2011, 11, 256-261.	3.0	270
75	Avoiding crystallization of lorazepam during infusion. European Journal of Pharmaceutical Sciences, 2011, 44, 621-6.	4.0	10
76	Electrochemically induced co-crystallization for product removal. CrystEngComm, 2011, 13, 2817-2819.	2.6	22
77	The potential of milk fat for the synthesis of valuable derivatives. European Food Research and Technology, 2011, 232, 1-8.	3.3	24
78	A process for the production of a diacylglycerol-based milk fat analogue. European Journal of Lipid Science and Technology, 2011, 113, 459-468.	1.5	13
79	Electrospray Crystallization for Highâ€Quality Submicronâ€Sized Crystals. Chemical Engineering and Technology, 2011, 34, 624-630.	1.5	54
80	Production of microparticles from milk fat products using the Supercritical Melt Micronization (ScMM) process. Journal of Supercritical Fluids, 2011, 55, 1079-1088.	3.2	20
81	The role of temperature in nucleation processes. Journal of Chemical Physics, 2011, 134, 054703.	3.0	17
82	Racemic Compound, Conglomerate, or Solid Solution: Phase Diagram Screening of Chiral Compounds. Crystal Growth and Design, 2010, 10, 1808-1812.	3.0	63
83	Synthesis and isolation of addedâ€value milk fat derivatives using lipaseâ€catalyzed reactions and supercritical carbon dioxide. Lipid Technology, 2010, 22, 54-57.	0.3	6
84	Integrated product removal of slightly water-soluble carboxylates from fermentation by electrochemically induced crystallization. Journal of Membrane Science, 2010, 363, 36-47.	8.2	18
85	Co-Crystallization as a Separation Technology: Controlling Product Concentrations by Co-Crystals. Crystal Growth and Design, 2010, 10, 1171-1179.	3.0	48
86	Mechanism and Kinetics of the Polymorphic Transformation of <i>o</i> -Aminobenzoic Acid. Crystal Growth and Design, 2010, 10, 2123-2128.	3.0	32
87	Carbamazepine Co-crystallization with Pyridine Carboxamides: Rationalization by Complementary Phase Diagrams and Crystal Energy Landscapes. Crystal Growth and Design, 2010, 10, 903-912.	3.0	75
88	Control over Polymorph Formation of <i>o</i> -Aminobenzoic Acid. Crystal Growth and Design, 2010, 10, 2541-2547.	3.0	53
89	The use of selfâ€interaction chromatography in stable formulation and crystallization of proteins. Biotechnology Journal, 2009, 4, 1266-1277.	3.5	5
90	Template Induced Crystallization: A Relation between Template Properties and Template Performance. Crystal Growth and Design, 2009, 9, 2762-2769.	3.0	18

#	Article	IF	Citations
91	Lipase-Catalyzed Ethanolysis of Milk Fat with a Focus on Short-Chain Fatty Acid Selectivity. Journal of Agricultural and Food Chemistry, 2009, 57, 116-121.	5.2	23
92	Protein self-interaction chromatography on a microchip. Lab on A Chip, 2009, 9, 600-605.	6.0	18
93	Discovering New Co-Crystals. Crystal Growth and Design, 2009, 9, 1531-1537.	3.0	128
94	Screening for templates that promote crystallization. Food and Bioproducts Processing, 2008, 86, 116-121.	3.6	11
95	Rate of Two-Dimensional Nucleation: Verifying Classical and Atomistic Theories by Monte Carlo Simulation. Journal of Physical Chemistry B, 2008, 112, 8614-8618.	2.6	15
96	Co-Crystal Polymorphs from a Solvent-Mediated Transformation. Crystal Growth and Design, 2008, 8, 2537-2542.	3.0	121
97	Concomitant Polymorphism of <i>o</i> -Aminobenzoic Acid in Antisolvent Crystallization. Crystal Growth and Design, 2008, 8, 37-43.	3.0	68
98	Polymorph Formation Studied by 3D Nucleation Simulations. Application to a Yellow Isoxazolone Dye, Paracetamol, and Glutamic Acid. Journal of Physical Chemistry B, 2007, 111, 1523-1530.	2.6	23
99	Precipitation mechanism of stable and metastable polymorphs of L-glutamic acid. AICHE Journal, 2007, 53, 354-362.	3.6	39
100	Analysis of Nucleation Rate Measurements in Precipitation Processes. Crystal Growth and Design, 2006, 6, 1380-1392.	3.0	75
101	Antisolvent Crystallization of the Polymorphs ofl-Histidine as a Function of Supersaturation Ratio and of Solvent Composition. Crystal Growth and Design, 2006, 6, 955-963.	3.0	79
102	Towards a Crystalline Product Quality Prediction Method by Combining Process Modeling and Molecular Simulations. Chemical Engineering and Technology, 2006, 29, 175-181.	1.5	8
103	Growth rate dispersion of ammonium sulphate attrition fragments. Journal of Crystal Growth, 2005, 275, e1397-e1401.	1.5	20
104	The unexpected formation of the stable beta phase of l-glutamic acid during pH-shift precipitation. Journal of Crystal Growth, 2005, 275, e1389-e1395.	1.5	13
105	Nucleus size and Zeldovich factor in two-dimensional nucleation at the Kossel crystal (001) surface. Surface Science, 2005, 574, 77-88.	1.9	18
106	Determining the nucleation rate from the dimer growth probability. Journal of Chemical Physics, 2005, 123, 114507.	3.0	21
107	Quantitative Measurement of the Polymorphic Transformation ofl-Glutamic Acid Using In-Situ Raman Spectroscopy. Crystal Growth and Design, 2004, 4, 465-469.	3.0	123
108	Development of an Experimental Method to Measure Nucleation Rates in Reactive Precipitation. Crystal Growth and Design, 2004, 4, 921-928.	3.0	26

#	Article	IF	CITATION
109	Process Modeling of the Polymorphic Transformation ofl-Glutamic Acid. Crystal Growth and Design, 2004, 4, 1161-1167.	3.0	80
110	An Analysis of Mixing in a Typical Experimental Set-up to Measure Nnucleation Rates of Precipitation Processes. Chemical Engineering and Technology, 2003, 26, 296-303.	1.5	14
111	Determination of the nucleus size from the growth probability of clusters. Journal of Chemical Physics, 2003, 119, 2241-2246.	3.0	38
112	Molecular modelling of the transport behaviour of C3 and C4 gases through the zeolite DD3R. Microporous and Mesoporous Materials, 2002, 53, 45-57.	4.4	26
113	Molecular modelling of the crystallization of polymorphs. Part I: The morphology of HMX polymorphs. Journal of Crystal Growth, 2002, 237-239, 2215-2220.	1.5	30
114	A New Molecular Modeling Approach To Predict Concomitant Nucleation of Polymorphs. Crystal Growth and Design, 2002, 2, 351-356.	3.0	34
115	The effect of solvent on crystal morphology. Journal of Crystal Growth, 2001, 230, 277-284.	1.5	102
116	Adsorption behaviour of polyelectrolytes on calcium fluoride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154, 259-271.	4.7	4
117	Adsorption behaviour of polyelectrolytes on calcium fluoride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154, 273-284.	4.7	6
118	Understanding crystal nucleation mechanisms: where do we stand? General discussion. Faraday Discussions, 0, 235, 219-272.	3.2	13