Jun Song Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236759/publications.pdf

Version: 2024-02-01

102 papers 17,164 citations

28274 55 h-index 101 g-index

104 all docs

104 docs citations

104 times ranked 16950 citing authors

#	Article	IF	CITATIONS
1	In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage. Nano Research, 2023, 16, 1513-1521.	10.4	11
2	Hierarchical 3D porous carbon with facilely accessible Fe–N ₄ single-atom sites for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 5925-5929.	10.3	37
3	Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Applied Catalysis B: Environmental, 2022, 302, 120861.	20.2	32
4	Selfâ€Supported Transition Metalâ€Based Nanoarrays for Efficient Energy Storage. Chemical Record, 2022, 22, e202100294.	5.8	20
5	Fast and stable Na insertion/deinsertion in double-shell hollow MnO nanospheres. Journal of Alloys and Compounds, 2022, 920, 165449.	5.5	2
6	Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction. EScience, 2022, 2, 445-452.	41.6	54
7	Regulating the d band in WS2@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 56, 343-352.	12.9	50
8	Practical strategies for enhanced performance of anode materials in Na ⁺ +(sup>+-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7317-7335.	10.3	41
9	ZnO/CoS heterostructured nanoflake arrays vertically grown on Ni foam for high-rate supercapacitors. Chemical Communications, 2021, 57, 10520-10523.	4.1	17
10	Realizing Efficient Overall Water Splitting by Tuning the Cobalt Content in Selfâ€Supported Ni x â^'Co y â^'P Microarrays. ChemElectroChem, 2021, 8, 1307-1315.	3.4	5
11	Highly Efficient Na+ Storage in Uniform Thorn Ball-Like α-MnSe/C Nanospheres. Acta Metallurgica Sinica (English Letters), 2021, 34, 373-382.	2.9	10
12	Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research, 2021, 14, 3795-3809.	10.4	80
13	Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping. Crystals, 2021, 11, 426.	2.2	5
14	Facile Cyclic Voltammetricâ€Induced Trimetallic Oxides with Shearâ€Wall Structure Exhibiting Advanced Performance in an Asymmetric Pseudocapacitor. Energy Technology, 2021, 9, 2001136.	3.8	0
15	Self-Supported Sheets-on-Wire CuO@Ni(OH)2/Zn(OH)2 Nanoarrays for High-Performance Flexible Quasi-Solid-State Supercapacitor. Processes, 2021, 9, 680.	2.8	21
16	Efficient Stress Dissipation in Wellâ€Aligned Pyramidal SbSn Alloy Nanoarrays for Robust Sodium Storage. Advanced Functional Materials, 2021, 31, 2104798.	14.9	31
17	Superior ionic conduction in LiAlO2 thin-film enabled by triply coordinated nitrogen. AIP Advances, 2021, 11, 065310.	1.3	2
18	Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application. International Journal of Hydrogen Energy, 2021, 46, 24128-24134.	7.1	14

#	Article	IF	CITATIONS
19	Bilateral Interfaces in In ₂ Se ₃ -Coln ₂ -CoSe ₂ Heterostructures for High-Rate Reversible Sodium Storage. ACS Nano, 2021, 15, 13307-13318.	14.6	99
20	Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chemical Engineering Journal, 2021, 417, 129279.	12.7	73
21	Introducing Oxygen Vacancies in Li4Ti5O12 via Hydrogen Reduction for High-Power Lithium-Ion Batteries. Processes, 2021, 9, 1655.	2.8	3
22	Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis: Recent progress and future perspective. Journal of Energy Chemistry, 2021, 60, 61-74.	12.9	30
23	Interface engineering for enhancing performance of additive-free NiTe@NiCoSe2 core/shell nanostructure for asymmetric supercapacitors. Journal of Power Sources, 2021, 506, 230056.	7.8	36
24	Butanol Promoting High Graphitization in Carbonâ€Supported Na ₃ V ₂ (PO ₄) ₃ for Highâ€Power Sodiumâ€Ion Battery with Long Life Cycle. ChemElectroChem, 2021, 8, 3538-3543.	3.4	7
25	Reduced energy barrier for Li+ diffusion in LiCoO2 via dual doping of Ba and Ga. Journal of Power Sources, 2021, 505, 230067.	7.8	24
26	Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes. Carbon, 2021, 185, 9-16.	10.3	29
27	Encapsulating Co9S8 nanocrystals into CNT-reinforced N-doped carbon nanofibers as a chainmail-like electrocatalyst for advanced Li-S batteries with high sulfur loading. Chemical Engineering Journal, 2021, 423, 130246.	12.7	45
28	Hydrogen-Mediated Synthesis of 3D Hierarchical Porous Zinc Catalyst for CO ₂ Electroreduction with High Current Density. Journal of Physical Chemistry C, 2021, 125, 23784-23790.	3.1	12
29	Molten-Salt-Assisted Synthesis of Nitrogen-Doped Carbon Nanosheets Derived from Biomass Waste of Gingko Shells as Efficient Catalyst for Oxygen Reduction Reaction. Processes, 2021, 9, 2124.	2.8	3
30	SeC Bonding Promoting Fast and Durable Na ⁺ Storage in Yolk–Shell SnSe ₂ @SeC. Small, 2020, 16, e2002486.	10.0	97
31	Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery. Electrochimica Acta, 2020, 336, 135690.	5.2	12
32	Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS ₂ (M =) Tj ETQq0	0.0 rgBT /	Oyerlock 10
33	MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochimica Acta, 2020, 346, 136201.	5.2	41
34	Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochimica Acta, 2019, 311, 221-229.	5.2	49
35	PVP-Assisted Synthesis of Self-Supported Ni ₂ P@Carbon for High-Performance Supercapacitor. Research, 2019, 2019, 8013285.	5.7	11
36	Modeling of solid oxide fuel cells with optimized interconnect designs. International Journal of Heat and Mass Transfer, 2018, 125, 506-514.	4.8	28

#	Article	IF	CITATIONS
37	Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceramics International, 2018, 44, 17660-17666.	4.8	20
38	One-pot synthesis of self-supported hierarchical urchin-like Ni ₃ S ₂ with ultrahigh areal pseudocapacitance. Journal of Materials Chemistry A, 2018, 6, 22115-22122.	10.3	44
39	Composition-Dependent Pseudocapacitive Properties of Self-Supported Nickel-Based Nanobelts. Journal of Physical Chemistry C, 2017, 121, 7101-7107.	3.1	20
40	Rational Design of Self-Supported Ni ₃ S ₂ Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density. ACS Applied Materials & Samp; Interfaces, 2017, 9, 496-504.	8.0	216
41	Sodiumâ€Saltâ€Promoted Growth of Selfâ€Supported Copper Oxides with Comparative Supercapacitive Properties. ChemElectroChem, 2017, 4, 3188-3195.	3.4	14
42	Self-supported phase-pure Ni3S2 sheet-on-rod nanoarrays with enhanced pseudocapacitive properties and high energy density. Journal of Power Sources, 2016, 325, 575-583.	7.8	53
43	Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5509-5516.	8.0	254
44	A versatile ionic liquid-assisted approach to synthesize hierarchical structures of \hat{l}^2 -Ni(OH) 2 nanosheets for high performance pseudocapacitor. Electrochimica Acta, 2016, 188, 863-870.	5.2	29
45	Distinct optical and magnetic properties of ionic liquid tuned hematite nanocrystals having different exposed (001) facets. RSC Advances, 2014, 4, 593-597.	3.6	10
46	H2O–EG-Assisted Synthesis of Uniform Urchinlike Rutile TiO2 with Superior Lithium Storage Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9998-10003.	8.0	32
47	Growth of two-dimensional ultrathin anatase TiO2 nanoplatelets on graphene for high-performance lithium-ion battery. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	10
48	SnO ₂ â€Based Nanomaterials: Synthesis and Application in Lithiumâ€ion Batteries. Small, 2013, 9, 1877-1893.	10.0	729
49	Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012, 4, 2526.	5.6	1,012
50	Mesoporous Co ₃ O ₄ and CoO@C Topotactically Transformed from Chrysanthemumâ€like Co(CO ₃) _{0.5} (OH)·0.11H ₂ O and Their Lithiumâ€Storage Properties. Advanced Functional Materials, 2012, 22, 861-871.	14.9	554
51	Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH) \hat{A} -0.11H2O nanowires with improved supercapacitive properties. Nanoscale, 2012, 4, 2145.	5.6	251
52	Formation of Pt–TiO ₂ –rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-476.	2.8	67
53	Facile synthesis of hierarchical MoS ₂ microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale, 2012, 4, 95-98.	5. 6	425
54	SnO2 and TiO2 nanosheets for lithium-ion batteries. Materials Today, 2012, 15, 246-254.	14.2	162

#	Article	IF	CITATIONS
55	Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres with High Surface Area. Journal of Physical Chemistry C, 2012, 116, 6873-6878.	3.1	221
56	Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. CrystEngComm, 2012, 14, 5133.	2.6	50
57	The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. Journal of Materials Chemistry, 2012, 22, 9466.	6.7	46
58	Green Synthesis of NiO Nanobelts with Exceptional Pseudoâ€Capacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	19.5	297
59	Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries. Applied Physics A: Materials Science and Processing, 2012, 107, 249-254.	2.3	38
60	Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale, 2011, 3, 4082.	5.6	61
61	Silica-based complex nanorattles as multifunctional carrier for anticancer drug. Journal of Materials Chemistry, 2011, 21, 8052.	6.7	42
62	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011, 3, 2158.	5.6	223
63	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 5687.	6.7	171
64	Formation of SnO ₂ Hollow Nanospheres inside Mesoporous Silica Nanoreactors. Journal of the American Chemical Society, 2011, 133, 21-23.	13.7	391
65	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy and Environmental Science, 2011, 4, 717-724.	30.8	852
66	SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9912.	6.7	327
67	Unusual rutile TiO2 nanosheets with exposed (001) facets. Chemical Science, 2011, 2, 2219.	7.4	52
68	Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Advances, 2011, 1, 397.	3.6	322
69	One-Pot Synthesis of Uniform Fe ₃ O ₄ Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3276-3279.	8.0	162
70	Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 6602.	6.7	280
71	Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4–MnO2 heterostructures via oriented growth. CrystEngComm, 2011, 13, 5685.	2.6	52
72	Quasiemulsion-Templated Formation of α-Fe ₂ O ₃ Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011, 133, 17146-17148.	13.7	750

#	Article	IF	CITATIONS
73	Synthesis of SnO ₂ Hierarchical Structures Assembled from Nanosheets and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2011, 115, 24605-24610.	3.1	200
74	SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications, 2011, 47, 7155.	4.1	387
75	TiO ₂ hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 1677-1680.	6.7	182
76	Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47, 12578.	4.1	781
77	Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe ₃ O ₄ @Carbon Nanorods for Application in Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 9814-9820.	3.1	295
78	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications, 2011, 47, 5780.	4.1	305
79	Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 2011, 47, 2631.	4.1	195
80	Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chemical Communications, 2011, 47, 10443.	4.1	72
81	CNTs@SnO ₂ @Carbon Coaxial Nanocables with High Mass Fraction of SnO ₂ for Improved Lithium Storage. Chemistry - an Asian Journal, 2011, 6, 2278-2281.	3.3	58
82	Oneâ€Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithiumâ€Storage Properties. Advanced Functional Materials, 2011, 21, 4120-4125.	14.9	256
83	Sandwichâ€Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage. Advanced Materials, 2011, 23, 998-1002.	21.0	204
84	Building Hematite Nanostructures by Oriented Attachment. Angewandte Chemie - International Edition, 2011, 50, 650-653.	13.8	91
85	Glucoseâ€Assisted Growth of MoS ₂ Nanosheets on CNT Backbone for Improved Lithium Storage Properties. Chemistry - A European Journal, 2011, 17, 13142-13145.	3.3	334
86	The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power Sources, 2010, 195, 2905-2908.	7.8	110
87	Shape-Controlled Synthesis of Cobalt-based Nanocubes, Nanodiscs, and Nanoflowers and Their Comparative Lithium-Storage Properties. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3628-3635.	8.0	177
88	Fast Synthesis of $\hat{l}\pm\text{-MoO}<\text{sub}>3\text{ Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 8675-8678.}$	3.1	208
89	TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chemical Communications, 2010, 46, 8252.	4.1	181
90	Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. Journal of Materials Chemistry, 2010, 20, 7015.	6.7	341

#	ARTICLE	lF	CITATIONS
91	One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications, 2010, 46, 6906.	4.1	185
92	Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications, 2010, 46, 6129.	4.1	216
93	Top-Down Fabrication of α-Fe ₂ O ₃ Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. Journal of the American Chemical Society, 2010, 132, 13162-13164.	13.7	359
94	Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO ₂ Nanosheets with Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 12048-12051.	3.1	90
95	Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO ₂ Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society, 2010, 132, 6124-6130.	13.7	1,215
96	Synthesis, Characterization, and Lithium Storage Capability of AMoO ₄ (A = Ni, Co) Nanorods. Chemistry of Materials, 2010, 22, 746-754.	6.7	222
97	Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb ₃ Nanoparticle Chains for Li-lon Battery Electrodes. Chemistry of Materials, 2010, 22, 5333-5339.	6.7	69
98	Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry Communications, 2009, 11, 2332-2335.	4.7	228
99	SnO ₂ Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 20504-20508.	3.1	222
100	One-Pot Synthesis of Carbon-Coated SnO ₂ Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry of Materials, 2009, 21, 2868-2874.	6.7	421
101	One-pot formation of SnO2 hollow nanospheres and \hat{l}_{\pm} -Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale, 2009, 1, 280.	5.6	204
102	Atomicallyâ€dispersed Feâ€N4 on 3D hierarchical porous carbon for highâ€performance lithiumâ€sulfur battery. Batteries and Supercaps, 0, , .	4.7	2