Pascal Ferre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236221/publications.pdf

Version: 2024-02-01

11047 20797 19,387 149 60 137 citations h-index g-index papers 163 163 163 20806 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 2002, 8, 1288-1295.	15.2	3,692
2	AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 2004, 428, 569-574.	13.7	1,464
3	SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 2004, 86, 839-848.	1.3	1,191
4	The Biology of Peroxisome Proliferator-Activated Receptors: Relationship With Lipid Metabolism and Insulin Sensitivity. Diabetes, 2004, 53, S43-S50.	0.3	666
5	Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12737-12742.	3.3	641
6	GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. Journal of Clinical Investigation, 2009, 119, 1201-1215.	3.9	605
7	Hepatic steatosis: a role for <i>de novo</i> lipogenesis and the transcription factor SREBPâ€1c. Diabetes, Obesity and Metabolism, 2010, 12, 83-92.	2.2	584
8	ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose. Molecular and Cellular Biology, 1999, 19, 3760-3768.	1.1	491
9	New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochemical Journal, 2002, 366, 377-391.	1.7	425
10	Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Molecular and Cellular Biology, 2000, 20, 6704-6711.	1.1	376
11	Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression. Journal of Biological Chemistry, 2004, 279, 20314-20326.	1.6	376
12	Functions of AMP-activated protein kinase in adipose tissue. Journal of Physiology, 2006, 574, 55-62.	1.3	332
13	MECHANISMS BY WHICH CARBOHYDRATES REGULATE EXPRESSION OF GENES FOR GLYCOLYTIC AND LIPOGENIC ENZYMES. Annual Review of Nutrition, 1997, 17, 325-352.	4.3	331
14	Anti-lipolytic Action of AMP-activated Protein Kinase in Rodent Adipocytes. Journal of Biological Chemistry, 2005, 280, 25250-25257.	1.6	286
15	Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB Journal, 1994, 8, 36-42.	0.2	255
16	SREBP-1c Transcription Factor and Lipid Homeostasis: Clinical Perspective. Hormone Research in Paediatrics, 2007, 68, 72-82.	0.8	255
17	New insights into ER stress-induced insulin resistance. Trends in Endocrinology and Metabolism, 2012, 23, 381-390.	3.1	247
18	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389-393.	1.7	236

#	Article	IF	CITATIONS
19	Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes, 1997, 46, 1393-1399.	0.3	225
20	AMP-activated Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase Gene in Rat Hepatocytes. Journal of Biological Chemistry, 1998, 273, 14767-14771.	1.6	217
21	Cholesterol, a Cell Size-dependent Signal That Regulates Glucose Metabolism and Gene Expression in Adipocytes. Journal of Biological Chemistry, 2001, 276, 16904-16910.	1.6	201
22	From The Cover: Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory elementbinding protein-1c. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 791-796.	3.3	186
23	Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Research, 1994, 638, 221-226.	1.1	184
24	Deletion of the Angiotensin Type 2 Receptor (AT2R) Reduces Adipose Cell Size and Protects From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2005, 54, 991-999.	0.3	183
25	Cholesterol-Induced Caveolin Targeting to Lipid Droplets in Adipocytes: A Role for Caveolar Endocytosis. Traffic, 2006, 7, 549-561.	1.3	158
26	Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. Journal of Hepatology, 2012, 56, 199-209.	1.8	134
27	PPARÎ ³ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3, 672.	5.8	127
28	Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. International Journal of Obesity, 2003, 27, 1178-1186.	1.6	124
29	Adenovirus-Mediated Overexpression of Sterol Regulatory Element Binding Protein-1c Mimics Insulin Effects on Hepatic Gene Expression and Glucose Homeostasis in Diabetic Mice. Diabetes, 2001, 50, 2425-2430.	0.3	121
30	Adenosine 5′-Monophosphate-Activated Protein Kinase Regulates Progesterone Secretion in Rat Granulosa Cells. Endocrinology, 2005, 146, 4500-4513.	1.4	121
31	Diabetes and inflammation: Fundamental aspects and clinical implications. Diabetes and Metabolism, 2010, 36, 327-338.	1.4	121
32	Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Molecular Brain Research, 1996, 38, 45-53.	2.5	117
33	Sterol Regulatory Element Binding Protein-1c Expression and Action in Rat Muscles: Insulin-Like Effects on the Control of Glycolytic and Lipogenic Enzymes and UCP3 Gene Expression. Diabetes, 2002, 51, 1722-1728.	0.3	117
34	Obesity-related Overexpression of Fatty-acid Synthase Gene in Adipose Tissue Involves Sterol Regulatory Element-binding Protein Transcription Factors. Journal of Biological Chemistry, 1998, 273, 29164-29171.	1.6	112
35	ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. Journal of Lipid Research, 2001, 42, 106-113.	2.0	111
36	SREBF-1 Gene Polymorphisms Are Associated With Obesity and Type 2 Diabetes in French Obese and Diabetic Cohorts. Diabetes, 2004, 53, 2153-2157.	0.3	108

#	Article	IF	CITATIONS
37	Decreased Resistin Expression in Mice with Different Sensitivities to a High-Fat Diet. Biochemical and Biophysical Research Communications, 2001, 289, 564-567.	1.0	106
38	Ketone body transport in the human neonate and infant Journal of Clinical Investigation, 1986, 77, 42-48.	3.9	106
39	Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia, 2018, 61, 399-412.	2.9	102
40	Nutrigenomics: The Impact of Biomics Technology on Nutrition Research. Annals of Nutrition and Metabolism, 2005, 49, 355-365.	1.0	98
41	Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochemical Journal, 2004, 378, 769-778.	1.7	97
42	Effects of Hypopituitarism and Growth Hormone Replacement Therapy on the Production and Utilization of Glucose in Childhood*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 1152-1157.	1.8	93
43	Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. Journal of Lipid Research, 2010, 51, 945-956.	2.0	93
44	Plasma Membrane Subdomain Compartmentalization Contributes to Distinct Mechanisms of Ceramide Action on Insulin Signaling. Diabetes, 2010, 59, 600-610.	0.3	91
45	Ketosis-Prone Type 2 Diabetes Mellitus and <emph type="ital">Human Herpesvirus 8</emph> Infection in Sub-Saharan Africans. JAMA - Journal of the American Medical Association, 2008, 299, 2770.	3.8	90
46	Extracellular adenosine activates AMP-dependent protein kinase (AMPK). Journal of Cell Science, 2006, 119, 1612-1621.	1.2	87
47	Sterol Regulatory Element-binding Protein-1c Mimics the Negative Effect of Insulin on Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription. Journal of Biological Chemistry, 2001, 276, 34816-34823.	1.6	85
48	Genetics and the Pathophysiology of Obesity. Pediatric Research, 2003, 53, 721-725.	1.1	85
49	Induction of Fatty-Acid-Synthase Gene Expression by Glucose in Primary Culture of Rat Hepatocytes. Dependency upon Glucokinase Activity. FEBS Journal, 1995, 230, 309-315.	0.2	84
50	Adipocyte cholesterol balance in obesity. Biochemical Society Transactions, 2004, 32, 103-106.	1.6	81
51	Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochemical Journal, 1997, 326, 345-349.	1.7	80
52	Metformin-Induced Stimulation of Adenosine 5′ Monophosphate-Activated Protein Kinase (PRKA) Impairs Progesterone Secretion in Rat Granulosa Cells1. Biology of Reproduction, 2006, 75, 342-351.	1,2	78
53	Adipose tissue-specific increase in angiotensinogen expression and secretion in the obese (fa/fa) Zucker rat. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E59-E66.	1.8	77
54	Progesterone Stimulates Adipocyte Determination and Differentiation 1/Sterol Regulatory Element-binding Protein 1c Gene Expression. Journal of Biological Chemistry, 2001, 276, 11512-11516.	1.6	75

#	Article	IF	Citations
55	Regulation of lipogenic enzyme expression by glucose in liver and adipose tissue: A review of the potential cellular and molecular mechanisms. Advances in Enzyme Regulation, 1996, 36, 199-226.	2.9	73
56	AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles. Journal of Endocrinology, 2006, 190, 85-97.	1.2	72
57	Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia, 2012, 55, 204-214.	2.9	69
58	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389.	1.7	67
59	Regulation of ABCA1 expression and cholesterol efflux during adipose differentiation of 3T3-L1 cells. Journal of Lipid Research, 2003, 44, 1499-1507.	2.0	67
60	Stimulation of Acetyl-CoA Carboxylase Gene Expression by Glucose Requires Insulin Release and Sterol Regulatory Element Binding Protein 1c in Pancreatic MIN6 Â-Cells. Diabetes, 2002, 51, 2536-2545.	0.3	64
61	Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia, 2010, 53, 768-778.	2.9	60
62	Changes in energy metabolism during the suckling and weaning period in the newborn. Reproduction, Nutrition, Development, 1986, 26, 619-631.	1.9	59
63	Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Current Opinion in Lipidology, 2010, 21, 239-246.	1.2	56
64	Depolarizing Actions of GABA in Immature Neurons Depend Neither on Ketone Bodies Nor on Pyruvate. Journal of Neuroscience, 2011, 31, 34-45.	1.7	53
65	Sustained Action of Ceramide on the Insulin Signaling Pathway in Muscle Cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE. Journal of Biological Chemistry, 2016, 291, 3019-3029.	1.6	52
66	SREBP-1c and lipogenesis in the liver: an update. Biochemical Journal, 2021, 478, 3723-3739.	1.7	51
67	In Vivo Evidence for a Role of Adipose Tissue SR-BI in the Nutritional and Hormonal Regulation of Adiposity and Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1340-1345.	1.1	50
68	Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.	2.9	50
69	SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 \hat{j}^3 . Journal of Lipid Research, 2007, 48, 1628-1636.	2.0	48
70	Steatosis and NASH in type 2 diabetes. Biochimie, 2017, 143, 37-41.	1.3	47
71	Glucose regulation of gene expression. Current Opinion in Clinical Nutrition and Metabolic Care, 1998, 1, 323-328.	1.3	47
72	Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity. Diabetes, 2011, 60, 448-453.	0.3	45

#	Article	IF	Citations
73	Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. Journal of Clinical Medicine, 2021, 10, 792.	1.0	44
74	Characterising the Inhibitory Actions of Ceramide upon Insulin Signaling in Different Skeletal Muscle Cell Models: A Mechanistic Insight. PLoS ONE, 2014, 9, e101865.	1.1	44
75	AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochemical Society Transactions, 2003, 31, 220-223.	1.6	43
76	Insulin and Angiotensin II Induce the Translocation of Scavenger Receptor Class B, Type I from Intracellular Sites to the Plasma Membrane of Adipocytes. Journal of Biological Chemistry, 2005, 280, 33536-33540.	1.6	43
77	Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. FEBS Journal, 1991, 195, 449-454.	0.2	42
78	Fetal PGC-1α Overexpression Programs Adult Pancreatic β-Cell Dysfunction. Diabetes, 2013, 62, 1206-1216.	0.3	42
79	Isoproterenol Inhibits Insulin-Stimulated Tyrosine Phosphorylation of the Insulin Receptor Without Increasing its Serine/Threonine Phosphorylation. FEBS Journal, 1995, 234, 108-115.	0.2	39
80	Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding protein-1c. Biochimie, 2005, 87, 1149-1155.	1.3	39
81	Development of obesity in Zucker rats. Early insulin resistance in muscles but normal sensitivity in white adipose tissue. Diabetes, 1987, 36, 626-631.	0.3	39
82	Fatty acid oxidation and ketogenesis during development. Reproduction, Nutrition, Development, 1985, 25, 303-319.	1.9	38
83	Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E122-E130.	1.8	38
84	HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes. Journal of Lipid Research, 2003, 44, 1811-1820.	2.0	37
85	A method for quantifying insulin sensitivity in vivo in the anesthetized rat: the euglycemic insulin clamp technique coupled with isotopic measurement of glucose turnover. Reproduction, Nutrition, Development, 1983, 23, 429-436.	1.9	36
86	Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. Journal of Biological Chemistry, 2016, 291, 16328-16338.	1.6	36
87	Regulation of gene expression by glucose. Proceedings of the Nutrition Society, 1999, 58, 621-623.	0.4	35
88	The Acute Phase Protein Serum Amyloid A Induces Lipolysis and Inflammation in Human Adipocytes through Distinct Pathways. PLoS ONE, 2012, 7, e34031.	1.1	35
89	Effects of prolonged physical exercise and fasting upon plasma testosterone level in rats. European Journal of Applied Physiology and Occupational Physiology, 1982, 49, 159-168.	1,2	34
90	Effect of diets rich in medium-chain and long-chain triglycerides on lipogenic-enzyme gene expression in liver and adipose tissue of the weaned rat. FEBS Journal, 1992, 208, 381-387.	0.2	34

#	Article	IF	Citations
91	Evidence that the development of hepatic fatty acid oxidation at birth in the rat is concomitant with an increased intramitochondrial CoA concentration. FEBS Journal, 1986, 156, 603-607.	0.2	32
92	Regulation of lipogenic enzyme and phosphoenolpyruvate carboxykinase gene expression in cultured white adipose tissue. Glucose and insulin effects are antagonized by cAMP. FEBS Journal, 1994, 223, 893-900.	0.2	32
93	Nutritional related liver disease: targeting the endoplasmic reticulum stress. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 575-582.	1.3	32
94	The inhibitory effect of glucose on phosphoenolpyruvate carboxykinase gene expression in cultured hepatocytes is transcriptional and requires glucose metabolism. FEBS Letters, 1999, 460, 527-532.	1.3	31
95	Glucose utilization rates and insulin sensitivity in vivo in tissues of virgin and pregnant rats. Diabetes, 1986, 35, 172-177.	0.3	30
96	Hormonal control of specific gene expression in the rat liver during the suckling-weaning transition. Advances in Enzyme Regulation, 1990, 30, 91-108.	2.9	28
97	Molecular and metabolic changes in white adipose tissue of the rat during development of ventromedial hypothalamic obesity. FEBS Journal, 1992, 207, 377-382.	0.2	27
98	Differential Regulation of Sterol Regulatory Element-binding Protein 1c Transcriptional Activity by Insulin and Liver X Receptor during Liver Development. Journal of Biological Chemistry, 2005, 280, 199-206.	1.6	27
99	Ceramide Transporter CERT Is Involved in Muscle Insulin Signaling Defects Under Lipotoxic Conditions. Diabetes, 2018, 67, 1258-1271.	0.3	27
100	Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation. PLoS ONE, 2015, 10, e0134654.	1.1	26
101	Effects of insulin and norepinephrine on glucose transport and metabolism in rat brown adipocytes. Potentiation by insulin of norepinephrine-induced glucose oxidation. FEBS Journal, 1987, 170, 469-474.	0.2	25
102	Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocyte differentiation. Diabetologia, 1998, 41, 963-968.	2.9	25
103	Fuel metabolism in the mammalian fetus. Reproduction, Nutrition, Development, 1979, 19, 181-197.	1.9	24
104	Weaning marginally affects glucose transporter (GLUT4) expression in calf muscles and adipose tissues. British Journal of Nutrition, 1997, 78, 251-271.	1.2	23
105	Dihydroceramides in Triglyceride-Enriched VLDL Are Associated with Nonalcoholic Fatty Liver Disease Severity in Type 2 Diabetes. Cell Reports Medicine, 2020, 1, 100154.	3.3	23
106	Metabolic effects of testosterone during prolonged physical exercise and fasting. European Journal of Applied Physiology and Occupational Physiology, 1984, 52, 300-304.	1.2	22
107	DnaJA4 is a SREBP-regulated chaperone involved in the cholesterol biosynthesis pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1107-1113.	1.2	22
108	Intramitochondrial factors controlling hepatic fatty acid oxidation at weaning in the rat. FEBS Letters, 1988, 232, 156-158.	1.3	21

#	Article	IF	Citations
109	Facilitative glucose transporters in ruminants. Proceedings of the Nutrition Society, 1996, 55, 221-236.	0.4	21
110	Effect of acarbose on glucose homeostasis, lipogenesis and lipogenic enzyme gene expression in adipose tissue of weaned rats. Diabetologia, 1993, 36, 503-509.	2.9	20
111	Prevention of Adipose Tissue Depletion during Food Deprivation in Angiotensin Type 2 Receptor-Deficient Mice. Endocrinology, 2006, 147, 5078-5086.	1.4	19
112	Hormonal regulation of liver phosphoenolpyruvate carboxykinase and glucokinase gene expression at weaning in the rat. Biochimie, 1991, 73, 71-76.	1.3	18
113	Insulin-sensitive glucose transporter transcript levels in calf muscles assessed with a bovine GLUT4 cDNA fragment. International Journal of Biochemistry and Cell Biology, 1996, 28, 795-806.	1.2	18
114	Glucose homoeostasis in pregnancy and lactation. Biochemical Society Transactions, 1987, 15, 1028-1030.	1.6	17
115	Molecular and cellular mechanisms of adipose secretion: Comparison of leptin and angiotensinogen. Journal of Cellular Biochemistry, 2001, 82, 666-673.	1.2	17
116	Evidence that stimulation of glucose metabolism by insulin is not altered in isolated soleus muscle of pregnant rats. Biochemical Journal, 1981, 200, 181-184.	1.7	16
117	Polyunsaturated fatty acids inhibit fatty acid synthase and spot-14-protein gene expression in cultured rat hepatocytes by a peroxidative mechanism. Biochemical Journal, 1999, 341, 371.	1.7	16
118	Laforin, a dual specificity phosphatase involved in Lafora disease, regulates insulin response and whole-body energy balance in mice. Human Molecular Genetics, 2011, 20, 2571-2584.	1.4	16
119	High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. Comptes Rendus - Biologies, 2017, 340, 25-36.	0.1	16
120	Effect of feeding pattern on the sensitivity of hepatic carnitine palmitoyl-transferase to inhibition by malonyl-CoA in the rat. Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 87, 1041-1043.	0.7	14
121	A New Role for a Metabolic Star: AMP-Activated Protein Kinase Stimulates Fat Absorption. Cell Metabolism, 2011, 13, 1-2.	7.2	14
122	Evidence for the presence of several phosphodiesterase isoforms in brown adipose tissue of Zucker rats: modulation of PDE2 by the fa gene expression. FEBS Letters, 1999, 456, 207-210.	1.3	13
123	Normal insulin sensitivity during the phase of glucose intolerance but insulin resistance at the onset of diabetes in the spontaneously diabetic BB rat. Diabetologia, 1989, 32, 839-844.	2.9	12
124	Effect of insulin on the properties of liver carnitine palmitoyltransferase in the starved rat: Assessment by the euglycemic hyperinsulinemic clamp. Metabolism: Clinical and Experimental, 1991, 40, 873-876.	1.5	12
125	Impaired \hat{l}^2 -adrenergic signaling pathway in white adipocytes of suckling fa/fa Zucker rats: a defect in receptor coupling. International Journal of Obesity, 2001, 25, 1592-1598.	1.6	12
126	Specific increase in leptin production in obese (falfa) rat adipose cells. Biochemical Journal, 2002, 362, 113.	1.7	11

#	Article	IF	CITATIONS
127	Hypoglycemic effects of a \hat{l}^2 -agonist, Ro 16-8714, in streptozotocin-diabetic rats: Decreased hepatic glucose production and increased glucose utilization in oxidative muscles. Metabolism: Clinical and Experimental, 1992, 41, 180-183.	1.5	10
128	Liver X receptor: from metabolism to cancer. Biochemical Journal, 2014, 459, e1-e3.	1.7	10
129	Influence of the weaning diet on the changes of glucose metabolism and of insulin sensitivity. Proceedings of the Nutrition Society, 1993, 52, 325-333.	0.4	9
130	Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells. PLoS ONE, 2016, 11, e0149343.	1.1	9
131	Integration of carbohydrate and lipid metabolism in skeletal muscle during postnatal development. Reproduction, Nutrition, Development, 1988, 28, 805-815.	1.9	8
132	A new transgenic mouse model of chronic hyperglycemia. Diabetes, 1994, 43, 143-153.	0.3	8
133	Influence of Exogenous Cortisol and Triglyceride Feeding on Glucose Homeostasis in the Fasted Newborn Rat. Pediatric Research, 1978, 12, 751-756.	1.1	7
134	Novel insights in the interplay between inflammation and metabolic diseases: A role for the pathogen sensing kinase PKR. Journal of Hepatology, 2011, 54, 1307-1309.	1.8	7
135	Influence of diet on the development and regulation of lipogenic enzymes in adipose tissue. Proceedings of the Nutrition Society, 1992, 51, 387-395.	0.4	6
136	Mechanism of Storage and Synthesis of Fatty Acids and Triglycerides in White Adipocytes. , 2013, , 101-121.		6
137	Role of adenosine monophosphate-activated protein kinase in the control of energy homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2005, 8, 355-360.	1.3	5
138	Impaired Hepatic Glycogenolysis Related to Hyperinsulinemia in Newborns from Hyperglycemic Pregnant Rats. Pediatric Research, 1990, 28, 646-651.	1.1	4
139	Evolution du métabolisme hépatique des acides gras chez le rat au cours du sevrage. Reproduction, Nutrition, Development, 1985, 25, 329-330.	1.9	3
140	Adaptations of glucose metabolism in white-fat adipocytes at weaning in the rat are concomitant with specific gene expression. Biochemical Society Transactions, 1990, 18, 857-858.	1.6	3
141	Increased mitogen-activated protein kinase expression and activity in white adipose tissue of ventromedial hypothalamus-lesioned rats. Diabetologia, 1997, 40, 533-540.	2.9	2
142	Effects of gestational hyperglycemia on glucose metabolism and its hormonal control in the fasted, newborn rat during the early postnatal period. Diabetes, 1985, 34, 995-1001.	0.3	2
143	Metabolic Interactions between Hepatic Fatty Acid Oxidation and Gluconeogenesis in the Newborn Rat. Biochemical Society Transactions, 1978, 6, 1323-1324.	1.6	1
144	Glucose Metabolism and Insulin Sensitivity During Suckling Period in Rats. , 1990, , 61-66.		1

#	Article	IF	CITATIONS
145	Glucose production in hypopituitary children. Pediatric Research, 1984, 18, 1209-1209.	1.1	0
146	Insulin action in the lactating mammary gland: a reply. Biochemical Journal, 1989, 257, 934-934.	1.7	0
147	L'obésité : aspects physiologiques, cellulaires et moléculaires. Oleagineux Corps Gras Lipides, 2003, 10 119-123.	0.2	0
148	Chapter 5 SREBP-1c regulation of nutrient homeostasis and lipid accumulation. Advances in Molecular and Cellular Endocrinology, 2006, , 91-113.	0.1	0
149	Emerging topics in type 2 diabetes: new mechanisms leading to new treatments?. Current Opinion in Pharmacology, 2009, 9, 733-736.	1.7	O