
Qijing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7236140/publications.pdf Version: 2024-02-01

OHING WANG

#	Article	IF	CITATIONS
1	Retinaâ€Inspired Selfâ€Powered Artificial Optoelectronic Synapses with Selective Detection in Organic Asymmetric Heterojunctions. Advanced Science, 2022, 9, e2103494.	11.2	40
2	Emerging Logic Devices beyond CMOS. Journal of Physical Chemistry Letters, 2022, 13, 1914-1924.	4.6	5
3	Molecular-Layer-Defined Asymmetric Schottky Contacts in Organic Planar Diodes for Self-Powered Optoelectronic Synapses. Journal of Physical Chemistry Letters, 2022, 13, 2338-2347.	4.6	9
4	Linking Glassâ€Transition Behavior to Photophysical and Charge Transport Properties of Highâ€Mobility Conjugated Polymers. Advanced Functional Materials, 2021, 31, 2007359.	14.9	26
5	Nonequilibrium phonon tuning and mapping in few-layer graphene with infrared nanoscopy. Physical Review B, 2021, 103, .	3.2	7
6	A Smarter Pavlovian Dog with Optically Modulated Associative Learning in an Organic Ferroelectric Neuromem. Research, 2021, 2021, 9820502.	5.7	9
7	Asymmetric electrode geometry induced photovoltaic behavior for self-powered organic artificial synapses. Flexible and Printed Electronics, 2021, 6, 044009.	2.7	2
8	Precise Extraction of Charge Carrier Mobility for Organic Transistors. Advanced Functional Materials, 2020, 30, 1904508.	14.9	34
9	Solution-processed organic single-crystalline semiconductors with a fence-like shape <i>via</i> ultrasound concussion. Journal of Materials Chemistry C, 2020, 8, 2589-2593.	5.5	2
10	Low-power-consumption organic field-effect transistors. JPhys Materials, 2020, 3, 014009.	4.2	22
11	Effect of access resistance on the experimentally measured temperature–carrier mobility dependence in highly-crystalline DNTT-based transistors. Materials Advances, 2020, 1, 1799-1804.	5.4	5
12	Device Based on Polymer Schottky Junctions and Their Applications: A Review. IEEE Access, 2020, 8, 189646-189660.	4.2	9
13	Patterning 2D Organic Crystalline Semiconductors via Thermally Induced Selfâ€Assembly. Advanced Electronic Materials, 2020, 6, 2000438.	5.1	7
14	Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electronâ€Deficient Polymer Processed by Solution Shear Coating. Advanced Materials, 2020, 32, e2000063.	21.0	38
15	An Optically Modulated Organic Schottkyâ€Barrier Planarâ€Diodeâ€Based Artificial Synapse. Advanced Optical Materials, 2020, 8, 2000153.	7.3	52
16	Few‣ayer Organic Crystalline van der Waals Heterojunctions for Ultrafast UV Phototransistors. Advanced Electronic Materials, 2020, 6, 2000062.	5.1	22
17	Molecular Layer-Defined Transition of Carrier Distribution and Correlation with Transport in Organic Crystalline Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 26267-26275.	8.0	6
18	Role of Schottky Barrier and Access Resistance in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2020, 11, 1466-1472.	4.6	19

QIJING WANG

#	Article	IF	CITATIONS
19	Semiconductor/dielectric interface in organic field-effect transistors: charge transport, interfacial effects, and perspectives with 2D molecular crystals. Advances in Physics: X, 2020, 5, 1747945.	4.1	9
20	Probing Coulomb Interactions on Charge Transport in Few‣ayer Organic Crystalline Semiconductors by the Gated van der Pauw Method. Advanced Electronic Materials, 2020, 6, 2000136.	5.1	7
21	Approaching isotropic transfer integrals in crystalline organic semiconductors. Physical Review Materials, 2020, 4, .	2.4	5
22	Fabrication of Two-Dimensional Crystalline Organic Films by Tilted Spin Coating for High-Performance Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 7226-7234.	8.0	24
23	Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4, 585-593.	39.5	327
24	pJ-Level Energy-Consuming, Low-Voltage Ferroelectric Organic Field-Effect Transistor Memories. Journal of Physical Chemistry Letters, 2019, 10, 2335-2340.	4.6	30
25	Additive-assisted "metal-wire-gap―process for N-type two-dimensional organic crystalline films. Organic Electronics, 2019, 68, 176-181.	2.6	1
26	36.1: <i>Invited Paper:</i> Solutionâ€Processed 2D Organic Crystals for Transistor Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 400-400.	0.3	3
27	Solutionâ€Processed 2D Molecular Crystals: Fabrication Techniques, Transistor Applications, and Physics. Advanced Materials Technologies, 2019, 4, 1800182.	5.8	53
28	Two-dimensional Organic Materials and Their Electronic Applications. Chemistry Letters, 2019, 48, 14-21.	1.3	4
29	Spin-Coated Crystalline Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2018, 9, 1318-1323.	4.6	37
30	Flexible Pressure Sensor With High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron Device Letters, 2018, 39, 288-291.	3.9	87
31	Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit. Scientific Reports, 2018, 8, 532.	3.3	14
32	Growth of Black Phosphorus Nanobelts and Microbelts. Small, 2018, 14, 1702501.	10.0	18
33	Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly. Journal of Physical Chemistry Letters, 2018, 9, 6755-6760.	4.6	31
34	Temperature dependence of piezo- and ferroelectricity in ultrathin P(VDF–TrFE) films. RSC Advances, 2018, 8, 29164-29171.	3.6	7
35	Interfacial Flat-Lying Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22513-22519.	8.0	18
36	Speed up Ferroelectric Organic Transistor Memories by Using Two-Dimensional Molecular Crystalline Semiconductors. ACS Applied Materials & Interfaces, 2017, 9, 18127-18133.	8.0	52

QIJING WANG

#	Article	IF	CITATIONS
37	Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors. Scientific Reports, 2017, 7, 7830.	3.3	32
38	Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Science Advances, 2017, 3, e1701186.	10.3	146
39	Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 11246-11251.	5.5	27
40	Boosting Hot-Electron Extraction Through Deep Groove Perfect Absorber for Si-Based Photodetector. IEEE Photonics Technology Letters, 2017, 29, 1884-1887.	2.5	4
41	2D Singleâ€Crystalline Molecular Semiconductors with Precise Layer Definition Achieved by Floatingâ€Coffeeâ€Ringâ€Driven Assembly. Advanced Functional Materials, 2016, 26, 3191-3198.	14.9	136
42	A novel frequency reversal transmission for cooperative networks with frequency offsets. , 2016, , .		0
43	Efficient inter arrier interference cancellation transmissions for cooperative networks with frequency offsets. IET Communications, 2016, 10, 2575-2581.	2.2	3
44	Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions. Nano Letters, 2016, 16, 3754-3759.	9.1	92
45	High-performance non-volatile field-effect transistor memories using an amorphous oxide semiconductor and ferroelectric polymer. Journal of Materials Chemistry C, 2016, 4, 7917-7923.	5.5	15
46	Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit. Physical Review Letters, 2016, 116, 016602.	7.8	220
47	Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model. Scientific Reports, 2016, 6, 23931.	3.3	42
48	Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface. Applied Physics Letters, 2015, 107, .	3.3	21
49	Unidirectional coating technology for organic field-effect transistors: materials and methods. Semiconductor Science and Technology, 2015, 30, 054001.	2.0	32
50	Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels. Nano Letters, 2015, 15, 7736-7741.	9.1	227
51	Low-voltage organic field-effect transistors based on novel high- <i>κ</i> organometallic lanthanide complex for gate insulating materials. AIP Advances, 2014, 4, .	1.3	6
52	Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration. AIP Advances, 2014, 4, 067126.	1.3	2
53	Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nature Communications, 2014, 5, 5162.	12.8	315
54	Influence of lithium fluoride thickness on electrical switching behavior in a cross-point structure using self-assembly molecules. Japanese Journal of Applied Physics, 2014, 53, 030304.	1.5	0

QIJING WANG

#	Article	IF	CITATIONS
55	Solution-processed organic crystals written directly with a rollerball pen for field-effect transistors. Organic Electronics, 2014, 15, 2234-2239.	2.6	19
56	Influence of Deposition Pressure on the Film Morphologies, Structures, and Mobilities for Different-Shaped Organic Semiconductors. Journal of Physical Chemistry C, 2014, 118, 14218-14226.	3.1	5
57	Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation. Scientific Reports, 2014, 4, 7227.	3.3	67
58	On Practical Charge Injection at the Metal/Organic Semiconductor Interface. Scientific Reports, 2013, 3, 1026.	3.3	71
59	Critical Impact of Gate Dielectric Interfaces on the Contact Resistance of High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2013, 117, 12337-12345.	3.1	98
60	Joule's law for organic transistors exploration: Case of contact resistance. Journal of Applied Physics, 2013, 113, 064507.	2.5	19
61	Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact. Applied Physics Letters, 2012, 100, .	3.3	130
62	Electrical switching behavior from ultrathin potential barrier of self-assembly molecules tuned by interfacial charge trapping. Applied Physics Letters, 2010, 96, .	3.3	15