## Deborah H Strickland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235612/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice. Respiratory<br>Physiology and Neurobiology, 2022, 298, 103846.                                                                               | 1.6 | 1         |
| 2  | Protection against severe infant lower respiratory tract infections by immune training: Mechanistic studies. Journal of Allergy and Clinical Immunology, 2022, 150, 93-103.                                                      | 2.9 | 11        |
| 3  | Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OMâ€85. Clinical and Translational Immunology, 2021, 10, e1303.                            | 3.8 | 2         |
| 4  | Metabolic dysfunction induced by a highâ€fat diet modulates hematopoietic stem and myeloid<br>progenitor cells in brown adipose tissue of mice. Immunology and Cell Biology, 2021, 99, 749-766.                                  | 2.3 | 2         |
| 5  | <scp>OMIP 076: Highâ€dimensional</scp> immunophenotyping of murine Tâ€cell, Bâ€cell, and antibody secreting cell subsets. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 888-892. | 1.5 | 5         |
| 6  | Prebiotic Supplementation During Pregnancy Modifies the Gut Microbiota and Increases Metabolites<br>in Amniotic Fluid, Driving a Tolerogenic Environment In Utero. Frontiers in Immunology, 2021, 12,<br>712614.                 | 4.8 | 20        |
| 7  | IRF7-Associated Immunophenotypes Have Dichotomous Responses to Virus/Allergen Coexposure and OM-85-Induced Reprogramming. Frontiers in Immunology, 2021, 12, 699633.                                                             | 4.8 | 4         |
| 8  | Innate Immune Training for Prevention of Recurrent Wheeze in Early Childhood. American Journal of<br>Respiratory and Critical Care Medicine, 2021, 204, 392-394.                                                                 | 5.6 | 6         |
| 9  | The maternal gut microbiome during pregnancy and offspring allergy and asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 669-678.                                                                                   | 2.9 | 55        |
| 10 | A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood. Journal of Immunological Methods, 2020, 477, 112703.                                                        | 1.4 | 8         |
| 11 | Oestrogen amplifies preâ€existing atopyâ€associated Th2 bias in an experimental asthma model. Clinical<br>and Experimental Allergy, 2020, 50, 391-400.                                                                           | 2.9 | 16        |
| 12 | Early origins of lung disease: towards an interdisciplinary approach. European Respiratory Review,<br>2020, 29, 200191.                                                                                                          | 7.1 | 21        |
| 13 | Transplacental Innate Immune Training via Maternal Microbial Exposure: Role of XBP1-ERN1 Axis in<br>Dendritic Cell Precursor Programming. Frontiers in Immunology, 2020, 11, 601494.                                             | 4.8 | 17        |
| 14 | Nasal Delivery of a Commensal <i>Pasteurellaceae</i> Species Inhibits Nontypeable Haemophilus<br>influenzae Colonization and Delays Onset of Otitis Media in Mice. Infection and Immunity, 2020, 88, .                           | 2.2 | 8         |
| 15 | In infants with sufficient vitamin D status at birth, vitamin D supplementation does not impact immune<br>development. Pediatric Allergy and Immunology, 2020, 31, 686-694.                                                      | 2.6 | 3         |
| 16 | Targeting maternal immune function during pregnancy for asthma prevention in offspring:<br>Harnessing the "farm effect�. Journal of Allergy and Clinical Immunology, 2020, 146, 270-272.                                         | 2.9 | 25        |
| 17 | Progressive increase of FcεRI expression across several PBMC subsets is associated with atopy and atopic asthma within schoolâ€aged children. Pediatric Allergy and Immunology, 2019, 30, 646-653.                               | 2.6 | 15        |
| 18 | Immunoinflammatory responses to febrile lower respiratory infections in infants display uniquely complex/intense transcriptomic profiles. Journal of Allergy and Clinical Immunology, 2019, 144, 1411-1413                       | 2.9 | 4         |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pregnancy Induces a Steady-State Shift in Alveolar Macrophage M1/M2 Phenotype That Is Associated<br>With a Heightened Severity of Influenza Virus Infection: Mechanistic Insight Using Mouse Models.<br>Journal of Infectious Diseases, 2019, 219, 1823-1831. | 4.0  | 14        |
| 20 | Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral<br>Bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1537-1549.                                                                | 5.6  | 28        |
| 21 | Quantification of Serum Ovalbumin-specific Immunoglobulin E Titre via in vivo Passive Cutaneous<br>Anaphylaxis Assay. Bio-protocol, 2019, 9, e3184.                                                                                                           | 0.4  | 2         |
| 22 | Early Life Ovalbumin Sensitization and Aerosol Challenge for the Induction of Allergic Airway<br>Inflammation in a BALB/c Murine Model. Bio-protocol, 2019, 9, e3181.                                                                                         | 0.4  | 0         |
| 23 | Functional differences in airway dendritic cells determine susceptibility to IgEâ€sensitization.<br>Immunology and Cell Biology, 2018, 96, 316-329.                                                                                                           | 2.3  | 7         |
| 24 | Atopy-Dependent and Independent Immune Responses in the Heightened Severity of Atopics to Respiratory Viral Infections: Rat Model Studies. Frontiers in Immunology, 2018, 9, 1805.                                                                            | 4.8  | 7         |
| 25 | Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host and Microbe, 2018, 24, 341-352.e5.                                                                          | 11.0 | 146       |
| 26 | Immunological Processes Driving IgE Sensitisation and Disease Development in Males and Females.<br>International Journal of Molecular Sciences, 2018, 19, 1554.                                                                                               | 4.1  | 34        |
| 27 | Basophil counts in PBMC populations during childhood acute wheeze/asthma are associated with future exacerbations. Journal of Allergy and Clinical Immunology, 2018, 142, 1639-1641.e5.                                                                       | 2.9  | 16        |
| 28 | Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation. Journal of Clinical Investigation, 2018, 128, 4856-4869.                                                                                       | 8.2  | 27        |
| 29 | Low dose treatment of mice with bacterial extract (OM-85) for attenuation of experimental atopic asthma in mice. Allergologia Et Immunopathologia, 2017, 45, 310-311.                                                                                         | 1.7  | 3         |
| 30 | Protection against maternal infection-associated fetal growth restriction: proof-of-concept with a microbial-derived immunomodulator. Mucosal Immunology, 2017, 10, 789-801.                                                                                  | 6.0  | 27        |
| 31 | Identification and Characterization of a Dendritic Cell Precursor in Parenchymal Lung Tissue.<br>American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 353-361.                                                                               | 2.9  | 3         |
| 32 | Cord bloodStreptococcus pneumoniae-specific cellular immune responses predict early<br>pneumococcal carriage in high-risk infants in Papua New Guinea. Clinical and Experimental<br>Immunology, 2017, 187, 408-417.                                           | 2.6  | 2         |
| 33 | A pathogenic role for the integrin CD103 in experimental allergic airways disease. Physiological<br>Reports, 2016, 4, e13021.                                                                                                                                 | 1.7  | 13        |
| 34 | Distinguishing benign from pathologic TH2 immunity in atopic children. Journal of Allergy and Clinical Immunology, 2016, 137, 379-387.                                                                                                                        | 2.9  | 64        |
| 35 | Persistent and Compartmentalised Disruption of Dendritic Cell Subpopulations in the Lung following<br>Influenza A Virus Infection. PLoS ONE, 2014, 9, e111520.                                                                                                | 2.5  | 15        |
| 36 | Epigenome-wide analysis of neonatal CD4 <sup>+</sup> T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. Epigenetics, 2014, 9, 1570-1576.                                                                                 | 2.7  | 46        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis. Haematologica, 2014, 99, 1149-1156.                                                          | 3.5 | 18        |
| 38 | Genomeâ€wide DNA methylation profiling identifies a folateâ€sensitive region of differential methylation<br>upstream of <i>ZFP57</i> â€imprinting regulator in humans. FASEB Journal, 2014, 28, 4068-4076.                   | 0.5 | 75        |
| 39 | Defective Respiratory Tract Immune Surveillance in Asthma. Chest, 2014, 145, 370-378.                                                                                                                                        | 0.8 | 41        |
| 40 | Size-Dependent Uptake of Particles by Pulmonary Antigen-Presenting Cell Populations and Trafficking<br>to Regional Lymph Nodes. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 67-77.                 | 2.9 | 105       |
| 41 | Altered Immunity and Dendritic Cell Activity in the Periphery of Mice after Long-Term Engraftment with Bone Marrow from Ultraviolet-Irradiated Mice. Journal of Immunology, 2013, 190, 5471-5484.                            | 0.8 | 45        |
| 42 | Virus infection and allergy in the development of asthma. Current Opinion in Allergy and Clinical<br>Immunology, 2012, 12, 151-157.                                                                                          | 2.3 | 67        |
| 43 | Inert 50-nm Polystyrene Nanoparticles That Modify Pulmonary Dendritic Cell Function and Inhibit<br>Allergic Airway Inflammation. Journal of Immunology, 2012, 188, 1431-1441.                                                | 0.8 | 51        |
| 44 | Toward Homeostasis. American Journal of Pathology, 2012, 181, 535-547.                                                                                                                                                       | 3.8 | 13        |
| 45 | Defective aeroallergen surveillance by airway mucosal dendritic cells as a determinant of risk for persistent airways hyper-responsiveness in experimental asthma. Mucosal Immunology, 2012, 5, 332-341.                     | 6.0 | 21        |
| 46 | Neonatal antigen-presenting cells are functionally more quiescent in children born under traditional compared with modern environmental conditions. Journal of Allergy and Clinical Immunology, 2012, 130, 1167-1174.e10.    | 2.9 | 34        |
| 47 | Ontogeny of Toll-Like and NOD-Like Receptor-Mediated Innate Immune Responses in Papua New Guinean<br>Infants. PLoS ONE, 2012, 7, e36793.                                                                                     | 2.5 | 39        |
| 48 | Comparison of neonatal T regulatory cell function in Papua New Guinean and Australian newborns.<br>Pediatric Allergy and Immunology, 2012, 23, 173-180.                                                                      | 2.6 | 14        |
| 49 | T regulatory cells in childhood asthma. Trends in Immunology, 2011, 32, 420-427.                                                                                                                                             | 6.8 | 45        |
| 50 | Restricted Aeroallergen Access to Airway Mucosal Dendritic Cells In Vivo Limits Allergen-Specific<br>CD4+ T Cell Proliferation during the Induction of Inhalation Tolerance. Journal of Immunology, 2011,<br>187, 4561-4570. | 0.8 | 14        |
| 51 | Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.<br>Mucosal Immunology, 2011, 4, 43-52.                                                                                  | 6.0 | 74        |
| 52 | The role of dendritic cells and regulatory T cells in the regulation of allergic asthma. , 2010, 125, 1-10.                                                                                                                  |     | 27        |
| 53 | Epithelial–dendritic cell interactions in allergic disorders. Current Opinion in Immunology, 2010, 22, 789-794.                                                                                                              | 5.5 | 16        |
| 54 | UV inhibits allergic airways disease in mice by reducing effector CD4 <sup>+</sup> T cells. Clinical and Experimental Allergy, 2010, 40, 772-785.                                                                            | 2.9 | 18        |

DEBORAH H STRICKLAND

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | UV exposure and protection against allergic airways disease. Photochemical and Photobiological Sciences, 2010, 9, 571-577.                                                                                                                                                     | 2.9  | 22        |
| 56 | Interactions between innate and adaptive immunity inÂasthma pathogenesis: New perspectives from studies onÂacute exacerbations. Journal of Allergy and Clinical Immunology, 2010, 125, 963-972.                                                                                | 2.9  | 73        |
| 57 | Identification and Isolation of Rodent Respiratory Tract Dendritic Cells. Methods in Molecular<br>Biology, 2010, 595, 249-263.                                                                                                                                                 | 0.9  | 2         |
| 58 | Soothing signals: transplacental transmission of resistance to asthma and allergy. Journal of Experimental Medicine, 2009, 206, 2861-2864.                                                                                                                                     | 8.5  | 40        |
| 59 | Pathogenic Mechanisms of Allergic Inflammation : Atopic Asthma as a Paradigm. Advances in<br>Immunology, 2009, 104, 51-113.                                                                                                                                                    | 2.2  | 17        |
| 60 | Bone marrow-derived cells in the healing burn wound—More than just inflammation. Burns, 2009, 35,<br>356-364.                                                                                                                                                                  | 1.9  | 55        |
| 61 | The CD200-CD200R axis in local control of lung inflammation. Nature Immunology, 2008, 9, 1011-1013.                                                                                                                                                                            | 14.5 | 26        |
| 62 | Regulation of immunological homeostasis in the respiratory tract. Nature Reviews Immunology, 2008,<br>8, 142-152.                                                                                                                                                              | 22.7 | 449       |
| 63 | Mucosal Regulatory T Cells in Airway Hyperresponsiveness. Chemical Immunology and Allergy, 2008, 94, 40-47.                                                                                                                                                                    | 1.7  | 5         |
| 64 | Comment on "Local CD11c+ MHC Class Ilâ^' Precursors Generate Lung Dendritic Cells during<br>Respiratory Viral Infection, but Are Depleted in the Process― Journal of Immunology, 2007, 178,<br>2609.1-2609.                                                                    | 0.8  | 1         |
| 65 | Allergic Airways Disease Develops after an Increase in Allergen Capture and Processing in the Airway<br>Mucosa. Journal of Immunology, 2007, 179, 5748-5759.                                                                                                                   | 0.8  | 53        |
| 66 | Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 2006, 203, 2649-2660.                                                                                                                    | 8.5  | 175       |
| 67 | Accelerated Antigen Sampling and Transport by Airway Mucosal Dendritic Cells following Inhalation of a Bacterial Stimulus. Journal of Immunology, 2006, 177, 5861-5867.                                                                                                        | 0.8  | 180       |
| 68 | Anatomical Location Determines the Distribution and Function of Dendritic Cells and Other APCs in the Respiratory Tract. Journal of Immunology, 2005, 175, 1609-1618.                                                                                                          | 0.8  | 225       |
| 69 | Bidirectional Interactions between Antigen-bearing Respiratory Tract Dendritic Cells (DCs) and T Cells<br>Precede the Late Phase Reaction in Experimental Asthma. Journal of Experimental Medicine, 2003, 198,<br>19-30.                                                       | 8.5  | 185       |
| 70 | Regulation of Dendritic Cell Recruitment into Resting and Inflamed Airway Epithelium: Use of<br>Alternative Chemokine Receptors as a Function of Inducing Stimulus. Journal of Immunology, 2001, 167,<br>228-234.                                                              | 0.8  | 117       |
| 71 | Challenging Cytokine Redundancy: Inflammatory Cell Movement and Clinical Course of Experimental<br>Autoimmune Encephalomyelitis Are Normal in Lymphotoxin-deficient, but Not Tumor Necrosis<br>Factor–deficient, Mice. Journal of Experimental Medicine, 1998, 187, 1517-1528. | 8.5  | 146       |
| 72 | Selective inhibition of T cell proliferation but not expression of effector function by human alveolar macrophages. Thorax, 1997, 52, 786-795.                                                                                                                                 | 5.6  | 30        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Critical Points of Tumor Necrosis Factor Action in Central Nervous System Autoimmune Inflammation<br>Defined by Gene Targeting. Journal of Experimental Medicine, 1997, 186, 1585-1590.                                                                                         | 8.5 | 217       |
| 74 | Regulation of Tâ€cell activation in the lung: alveolar macrophages induce reversible Tâ€cell anergy in<br>vitro associated with inhibition of interleukinâ€2 receptor signal transduction. Immunology, 1996, 87,<br>250-258.                                                    | 4.4 | 76        |
| 75 | Regulation of Tâ€cell activation in the lung: isolated lung T cells exhibit surface phenotypic<br>characteristics of recent activation including downâ€modulated Tâ€cell receptors, but are locked into<br>the G 0 /G 1 phase of the cell cycle. Immunology, 1996, 87, 242-249. | 4.4 | 38        |
| 76 | Suppression of T-cell activation by pulmonary alveolar macrophages: dissociation of effects on TcR, IL-2R expression, and proliferation. European Respiratory Journal, 1994, 7, 2124-2130.                                                                                      | 6.7 | 35        |
| 77 | Immunoregulation of asthma: control of T-lymphocyte activation in the respiratory tract. The<br>European Respiratory Journal Supplement, 1991, 13, 6s-15s.                                                                                                                      | 0.8 | 6         |
| 78 | Selective attrition of non-recirculating T cells during normal passage through the lung vascular bed.<br>Immunology, 1990, 69, 476-81.                                                                                                                                          | 4.4 | 22        |