
Matthias Griese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incidence and Prevalence of Children's Diffuse Lung Disease in Spain. Archivos De Bronconeumologia, 2022, 58, 22-29.	0.8	15
2	Pulmonary alveolar proteinosis due to heterozygous mutation in <i>OAS1</i> : Whole lung lavages for longâ€ŧerm bridging to hematopoietic stem cell transplantation. Pediatric Pulmonology, 2022, 57, 273-277.	2.0	5
3	Healthcare resource utilisation and medical costs for children with interstitial lung diseases (chILD) in Europe. Thorax, 2022, 77, 781-789.	5.6	5
4	Acute exacerbations in children's interstitial lung disease. Thorax, 2022, 77, 799-804.	5.6	5
5	High-Content Screening Identifies Cyclosporin A as a Novel ABCA3-Specific Molecular Corrector. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 382-390.	2.9	10
6	Autoimmune PAP (aPAP) in children. ERJ Open Research, 2022, 8, 00701-2021.	2.6	2
7	Interstitial lung disease in infancy and early childhood: a clinicopathological primer. European Respiratory Review, 2022, 31, 210251.	7.1	10
8	Etiologic Classification of Diffuse Parenchymal (Interstitial) Lung Diseases. Journal of Clinical Medicine, 2022, 11, 1747.	2.4	27
9	Do Not Miss Acute Diffuse Panbronchiolitis for Tree-in-Bud: Case Series of a Rare Lung Disease. Diagnostics, 2022, 12, 1653.	2.6	1
10	Safety and Efficacy of Elexacaftor/Tezacaftor/Ivacaftor for 24 Weeks or Longer in People with Cystic Fibrosis and One or More <i>F508del</i> Alleles: Interim Results of an Open-Label Phase 3 Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 381-385.	5.6	116
11	Comorbidity and longâ€ŧerm clinical outcome of laryngotracheal clefts types III and IV: Systematic analysis of new cases. Pediatric Pulmonology, 2021, 56, 138-144.	2.0	7
12	The Human Phenotype Ontology in 2021. Nucleic Acids Research, 2021, 49, D1207-D1217.	14.5	652
13	Surfactant dysfunction syndromes and pulmonary alveolar proteinosis. , 2021, , 602-609.		Ο
14	Airways glutathione S-transferase omega-1 and its A140D polymorphism are associated with severity of inflammation and respiratory dysfunction in cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 1053-1061.	0.7	6
15	<scp>FARS1</scp> â€related disorders caused by biâ€allelic mutations in cytosolic phenylalanylâ€ <scp>tRNA</scp> synthetase genes: Look beyond the lungs!. Clinical Genetics, 2021, 99, 789-801.	2.0	16
16	Study design of a randomised, placebo-controlled trial of nintedanib in children and adolescents with fibrosing interstitial lung disease. ERJ Open Research, 2021, 7, 00805-2020.	2.6	14
17	Hypersensitivity pneumonitis: Lessons from a randomized controlled trial in children. Pediatric Pulmonology, 2021, 56, 2627-2633.	2.0	3
18	Heterozygous <i>OAS1</i> gain-of-function variants cause an autoinflammatory immunodeficiency. Science Immunology, 2021, 6, .	11.9	36

#	Article	IF	CITATIONS
19	Expanding the phenotypic spectrum of FINCA (fibrosis, neurodegeneration, and cerebral angiomatosis) syndrome beyond infancy. Clinical Genetics, 2021, 100, 453-461.	2.0	10
20	Insights Into Patient Variability During Ivacaftor-Lumacaftor Therapy in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 577263.	3.5	6
21	Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 381-393.	2.9	40
22	The improved clinical course of persistent tachypnea of infancy with inhaled bronchodilators and corticosteroids. Pediatric Pulmonology, 2021, 56, 3952-3959.	2.0	4
23	Earlyâ€onset, fatal interstitial lung disease in STAT3 gainâ€ofâ€function patients. Pediatric Pulmonology, 2021, 56, 3934-3941.	2.0	9
24	Case Report: Unilateral Sixth Cranial Nerve Palsy Associated With COVID-19 in a 2-year-old Child. Frontiers in Pediatrics, 2021, 9, 756014.	1.9	9
25	One-year outcomes in a multicentre cohort study of incident rare diffuse parenchymal lung disease in children (ChILD). Thorax, 2020, 75, 172-175.	5.6	11
26	Persistent tachypnea of infancy: Follow up at school age. Pediatric Pulmonology, 2020, 55, 3119-3125.	2.0	11
27	Pulmonary function testing in children's interstitial lung disease. European Respiratory Review, 2020, 29, 200019.	7.1	12
28	Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic <i>MARS1</i> variants. Pediatric Pulmonology, 2020, 55, 3057-3066.	2.0	19
29	Treating Allergic Bronchopulmonary Aspergillosis with Short-Term Prednisone and Itraconazole in Cystic Fibrosis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2608-2614.e3.	3.8	11
30	Variation in the bombesin staining of pulmonary neuroendocrine cells in pediatric pulmonary disorders—A useful marker for airway maturity. Pediatric Pulmonology, 2020, 55, 2383-2388.	2.0	8
31	Postinfectious Bronchiolitis Obliterans in Children: Diagnostic Workup and Therapeutic Options: A Workshop Report. Canadian Respiratory Journal, 2020, 2020, 1-16.	1.6	39
32	Lymphocytic interstitial pneumonia and follicular bronchiolitis in children: A registryâ€based case series. Pediatric Pulmonology, 2020, 55, 909-917.	2.0	16
33	Lung ultrasound—a new diagnostic modality in persistent tachypnea of infancy. Pediatric Pulmonology, 2020, 55, 1028-1036.	2.0	4
34	Prospective evaluation of hydroxychloroquine in pediatric interstitial lung diseases: Study protocol for an investigator-initiated, randomized controlled, parallel-group clinical trial. Trials, 2020, 21, 307.	1.6	11
35	Clinical characteristics of patients with familial idiopathic pulmonary fibrosis (f-IPF). BMC Pulmonary Medicine, 2019, 19, 130.	2.0	32
36	Metabolic labelling of choline phospholipids probes ABCA3 transport in lamellar bodies. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158516.	2.4	7

#	Article	IF	CITATIONS
37	Patient education for children with interstitial lung diseases and their caregivers: A pilot study. Patient Education and Counseling, 2019, 102, 1131-1139.	2.2	9
38	Potentiation of ABCA3 lipid transport function by ivacaftor and genistein. Journal of Cellular and Molecular Medicine, 2019, 23, 5225-5234.	3.6	26
39	Phenotype characterisation of <i>TBX4</i> mutation and deletion carriers with neonatal and paediatric pulmonary hypertension. European Respiratory Journal, 2019, 54, 1801965.	6.7	77
40	Quantitative Lipidomics in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 881-887.	5.6	25
41	Lavage lipidomics signatures in children with cystic fibrosis and protracted bacterial bronchitis. Journal of Cystic Fibrosis, 2019, 18, 790-795.	0.7	14
42	Pulmonary alveolar proteinosis. Nature Reviews Disease Primers, 2019, 5, 16.	30.5	244
43	Lung disease in STAT 3 hyperâ€lgE syndrome requires intense therapy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1691-1702.	5.7	15
44	Bi-allelic missense <i>ABCA3</i> mutations in a patient with childhood ILD who reached adulthood. ERJ Open Research, 2019, 5, 00066-2019.	2.6	22
45	Abandoning developmental silos. Current Opinion in Pulmonary Medicine, 2019, 25, 418-425.	2.6	2
46	Early onset children's interstitial lung diseases: Discrete entities or manifestations of pulmonary dysmaturity?. Paediatric Respiratory Reviews, 2019, 30, 65-71.	1.8	19
47	Development and validation of a healthâ€related quality of life questionnaire for pediatric patients with interstitial lung disease. Pediatric Pulmonology, 2018, 53, 954-963.	2.0	24
48	Chronic interstitial lung disease in children. European Respiratory Review, 2018, 27, 170100.	7.1	50
49	Functional rescue of misfolding ABCA3 mutations by small molecular correctors. Human Molecular Genetics, 2018, 27, 943-953.	2.9	33
50	Hermansky-Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood. Orphanet Journal of Rare Diseases, 2018, 13, 42.	2.7	33
51	ABCA3 missense mutations causing surfactant dysfunction disorders have distinct cellular phenotypes. Human Mutation, 2018, 39, 841-850.	2.5	28
52	Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibioticÂresistance genes in children and neonates. Infection, 2018, 46, 189-196.	4.7	33
53	International management platform for children's interstitial lung disease (chILD-EU). Thorax, 2018, 73, 231-239.	5.6	64
54	Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and <i>F508del</i> / <i>F508del-CFTR</i> or <i>F508del</i> / <i>G551D-CFTR</i> . American Journal of Respiratory and Critical Care Medicine, 2018, 197, 214-224.	5.6	152

#	Article	IF	CITATIONS
55	Bi-allelic Mutations in Phe-tRNA Synthetase Associated with a Multi-system Pulmonary Disease Support Non-translational Function. American Journal of Human Genetics, 2018, 103, 100-114.	6.2	34
56	Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulmonary Medicine, 2018, 18, 79.	2.0	43
57	Lung disease caused by <i>ABCA3</i> mutations. Thorax, 2017, 72, 213-220.	5.6	110
58	Pott's disease: a major issue for an unaccompanied refugee minor. Thorax, 2017, 72, 282-283.	5.6	5
59	Increasing Total Serum IgE, Allergic Bronchopulmonary Aspergillosis, and Lung Function in Cystic Fibrosis. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1591-1598.e6.	3.8	11
60	Increasing sputum levels of gamma-glutamyltransferase may identify cystic fibrosis patients who do not benefit from inhaled glutathione. Journal of Cystic Fibrosis, 2017, 16, 342-345.	0.7	7
61	Quantification of volume and lipid filling of intracellular vesicles carrying the ABCA3 transporter. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2330-2335.	4.1	16
62	Pulmonary Alveolar Proteinosis: A Comprehensive Clinical Perspective. Pediatrics, 2017, 140, e20170610.	2.1	45
63	An informative intragenic microsatellite marker suggests the IL-1 receptor as a genetic modifier in cystic fibrosis. European Respiratory Journal, 2017, 50, 1700426.	6.7	8
64	Increased Risk of Interstitial Lung Disease in Children with a Single R288K Variant of ABCA3. Molecular Medicine, 2016, 22, 183-191.	4.4	21
65	Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases. PLoS ONE, 2016, 11, e0152594.	2.5	9
66	Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE). PLoS ONE, 2016, 11, e0157789.	2.5	16
67	A Global Survey on Whole Lung Lavage in Pulmonary Alveolar Proteinosis. Chest, 2016, 150, 251-253.	0.8	20
68	Adherence pattern to study drugs in clinical trials by patients with cystic fibrosis. Pediatric Pulmonology, 2016, 51, 143-146.	2.0	7
69	Tools to explore ABCA3 mutations causing interstitial lung disease. Pediatric Pulmonology, 2016, 51, 1284-1294.	2.0	19
70	Management of children with interstitial lung diseases: the difficult issue of acute exacerbations. European Respiratory Journal, 2016, 48, 1559-1563.	6.7	33
71	Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet Journal of Rare Diseases, 2016, 11, 115.	2.7	100
72	Microbial colonization and lung function in adolescents with cystic fibrosis. Journal of Cystic Fibrosis, 2016, 15, 340-349.	0.7	63

#	Article	IF	CITATIONS
73	Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. Journal of Allergy and Clinical Immunology, 2016, 138, 1183-1189.e4.	2.9	28
74	Delivery of Alpha-1 Antitrypsin to Airways. Annals of the American Thoracic Society, 2016, 13, S346-S351.	3.2	25
75	European idiopathic pulmonary fibrosis Patient Charter: a missed opportunity. European Respiratory Journal, 2016, 48, 282-283.	6.7	3
76	Homooligomerization of ABCA3 and its functional significance. International Journal of Molecular Medicine, 2016, 38, 558-566.	4.0	3
77	Persistent Tachypnea of Infancy. Usual and Aberrant. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 438-447.	5.6	51
78	Cardiovascular risk in pulmonary alveolar proteinosis. Expert Review of Respiratory Medicine, 2016, 10, 235-240.	2.5	2
79	Surfactant proteins in pediatric interstitial lung disease. Pediatric Research, 2016, 79, 34-41.	2.3	23
80	Spezielle interstitielle Lungenerkrankungen im Kindesalter. , 2016, , 283-296.		0
81	Categorizing diffuse parenchymal lung disease in children. Orphanet Journal of Rare Diseases, 2015, 10, 122.	2.7	42
82	Pulmonary alveolar proteinosis in a cat. BMC Veterinary Research, 2015, 11, 302.	1.9	7
83	Lifeâ€ŧhreatening, giant pneumatoceles in the course of surfactant protein C deficiency. Pediatric Pulmonology, 2015, 50, E25-8.	2.0	5
84	Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	100
85	Surfactant Lipidomics in Healthy Children and Childhood Interstitial Lung Disease. PLoS ONE, 2015, 10, e0117985.	2.5	38
86	In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nature Biotechnology, 2015, 33, 584-586.	17.5	113
87	European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax, 2015, 70, 1078-1084.	5.6	192
88	Pulmonary alveolar proteinosis: time to shift?. Expert Review of Respiratory Medicine, 2015, 9, 337-349.	2.5	22
89	ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 987-995.	2.4	18
90	Biallelic Mutations of Methionyl-tRNA Synthetase Cause a Specific Type of Pulmonary Alveolar Proteinosis Prevalent on Réunion Island. American Journal of Human Genetics, 2015, 96, 826-831.	6.2	94

#	Article	IF	CITATIONS
91	GATA2 deficiency in children and adults with severe pulmonary alveolar proteinosis and hematologic disorders. BMC Pulmonary Medicine, 2015, 15, 87.	2.0	63
92	CXCR4 ⁺ granulocytes reflect fungal cystic fibrosis lung disease. European Respiratory Journal, 2015, 46, 395-404.	6.7	10
93	Genotype alone does not predict the clinical course of <i>SFTPC</i> deficiency in paediatric patients. European Respiratory Journal, 2015, 46, 197-206.	6.7	72
94	Pushing chILD Forward: The Bright Future of Children's Interstitial Lung Diseases. Annals of the American Thoracic Society, 2015, 12, 1428-1429.	3.2	2
95	Respiratory Bronchiolitis-Associated Interstitial Lung Disease in Childhood: New Sequela of Smoking. Pediatrics, 2015, 136, e1026-e1029.	2.1	3
96	Hydroxychloroquine in children with interstitial (diffuse parenchymal) lung diseases. Pediatric Pulmonology, 2015, 50, 410-419.	2.0	49
97	Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. Journal of Medical Genetics, 2014, 51, 375-387.	3.2	77
98	The chemokine CCL18 characterises <i>Pseudomonas</i> infections in cystic fibrosis lung disease. European Respiratory Journal, 2014, 44, 1608-1615.	6.7	16
99	Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis. Orphanet Journal of Rare Diseases, 2014, 9, 171.	2.7	61
100	Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nature Genetics, 2014, 46, 646-651.	21.4	232
101	Predictive values of antibodies against Pseudomonas aeruginosa in patients with cystic fibrosis one year after early eradication treatment. Journal of Cystic Fibrosis, 2014, 13, 534-541.	0.7	10
102	Pulmonary alveolar proteinosis in children on La Réunion Island: a new inherited disorder?. Orphanet Journal of Rare Diseases, 2014, 9, 85.	2.7	33
103	A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respiratory Research, 2014, 15, 43.	3.6	100
104	Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting?. European Respiratory Journal, 2014, 44, 17-19.	6.7	35
105	Long-Term Inhaled Granulocyte Macrophage–Colony-Stimulating Factor in Autoimmune Pulmonary Alveolar Proteinosis: Effectiveness, Safety, and Lowest Effective Dose. Clinical Drug Investigation, 2014, 34, 553-564.	2.2	31
106	Successful weaning from mechanical ventilation in a patient with surfactant protein C deficiency presenting with severe neonatal respiratory distress. BMJ Case Reports, 2014, 2014, bcr2013203053-bcr2013203053.	0.5	12
107	Sonstige Lungenerkrankungen. , 2014, , 773-786.		0

108 Zystische Fibrose. , 2014, , 795-818.

#	Article	IF	CITATIONS
109	Inhalation Treatment with Glutathione in Patients with Cystic Fibrosis. A Randomized Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 83-89.	5.6	73
110	Hypersensitivity pneumonitis: lessons for diagnosis and treatment of a rare entity in children. Orphanet Journal of Rare Diseases, 2013, 8, 121.	2.7	39
111	The basidiomycetous yeast Trichosporon may cause severe lung exacerbation in cystic fibrosis patients – clinical analysis of Trichosporonpositive patients in a Munich cohort. BMC Pulmonary Medicine, 2013, 13, 61.	2.0	26
112	Research in progress: put the orphanage out of business: TableÂ1. Thorax, 2013, 68, 971-973.	5.6	28
113	<i><scp>SFTPC</scp></i> mutations cause <scp>SP</scp> â€C degradation and aggregate formation without increasing <scp>ER</scp> stress. European Journal of Clinical Investigation, 2013, 43, 791-800.	3.4	27
114	The risk of hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type 2. Blood, 2013, 121, 2943-2951.	1.4	72
115	Wash-out kinetics and efficacy of a modified lavage technique for alveolar proteinosis. European Respiratory Journal, 2012, 40, 1468-1474.	6.7	31
116	Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation. Human Molecular Genetics, 2012, 21, 2793-2806.	2.9	36
117	The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation. BMC Pulmonary Medicine, 2012, 12, 15.	2.0	19
118	Surfactant Protein A in Cystic Fibrosis: Supratrimeric Structure and Pulmonary Outcome. PLoS ONE, 2012, 7, e51050.	2.5	9
119	Pulmonary alveolar proteinosis: New insights from a single-center cohort of 70 patients. Respiratory Medicine, 2011, 105, 1908-1916.	2.9	98
120	Pulmonary Hypertension Presenting With Apnea, Cyanosis, and Failure to Thrive in a Young Child. Chest, 2011, 140, 1086-1089.	0.8	2
121	Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 2011, 29, 154-157.	17.5	622
122	Long-term follow-up and treatment of congenital alveolar proteinosis. BMC Pediatrics, 2011, 11, 72.	1.7	31
123	Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells. Respiratory Research, 2011, 12, 4.	3.6	83
124	Fatal neonatal respiratory failure in an infant with congenital hypothyroidism due to haploinsufficiency of the NKX2-1 gene: alteration of pulmonary surfactant homeostasis. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2011, 96, F453-F456.	2.8	36
125	A CFTR Potentiator in Patients with Cystic Fibrosis and the <i>G551D</i> Mutation. New England Journal of Medicine, 2011, 365, 1663-1672.	27.0	1,920
126	Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases. Respiratory Research, 2010, 11, 32.	3.6	42

#	Article	IF	CITATIONS
127	The surfactant lipid transporter ABCA3 is Nâ€ŧerminally cleaved inside LAMP3â€positive vesicles. FEBS Letters, 2010, 584, 4306-4312.	2.8	30
128	A non-BRICHOS surfactant protein c mutation disrupts epithelial cell function and intercellular signaling. BMC Cell Biology, 2010, 11, 88.	3.0	19
129	Assessment of Surfactant Protein A (SP-A) dependent agglutination. BMC Pulmonary Medicine, 2010, 10, 59.	2.0	5
130	Meconium ileus—it is time to act now!. Pediatric Pulmonology, 2010, 45, 949-950.	2.0	1
131	Whole-lung lavage in infants and children with pulmonary alveolar proteinosis. Paediatric Anaesthesia, 2010, 20, 1118-1123.	1.1	32
132	Longâ€ŧerm pulmonary outcome after meconium ileus in cystic fibrosis. Pediatric Pulmonology, 2009, 44, 1201-1206.	2.0	19
133	Incidence and classification of pediatric diffuse parenchymal lung diseases in Germany. Orphanet Journal of Rare Diseases, 2009, 4, 26.	2.7	96
134	Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulmonary Medicine, 2008, 8, 6.	2.0	24
135	TLR Expression on Neutrophils at the Pulmonary Site of Infection: TLR1/TLR2-Mediated Up-Regulation of TLR5 Expression in Cystic Fibrosis Lung Disease. Journal of Immunology, 2008, 181, 2753-2763.	0.8	86
136	Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant. Respiratory Research, 2007, 8, 69.	3.6	12
137	Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nature Medicine, 2007, 13, 1423-1430.	30.7	291
138	Oxidative damage to surfactant protein D in pulmonary diseases. Free Radical Research, 2006, 40, 419-425.	3.3	32
139	Pulmonary TH2 response in Pseudomonas aeruginosa–infected patients with cystic fibrosis. Journal of Allergy and Clinical Immunology, 2006, 117, 204-211.	2.9	172
140	Oxidative Changes of Bronchoalveolar Proteins in Cystic Fibrosis. Chest, 2006, 129, 431-437.	0.8	57
141	Alteration of the Pulmonary Surfactant System in Full-Term Infants with Hereditary ABCA3 Deficiency. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 571-580.	5.6	140
142	Skin Prick Test Reactivity to Supplemental Enzymes in Cystic Fibrosis and Pancreatic Insufficiency. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, 194-198.	1.8	8
143	Agglutination ofPseudomonas aeruginosa by Surfactant Protein D. Pediatric Pulmonology, 2005, 40, 378-384.	2.0	11
144	Sequential analysis of surfactant, lung function and inflammation in cystic fibrosis patients. Respiratory Research, 2005, 6, 133.	3.6	31

#	Article	IF	CITATIONS
145	Therapeutic lung lavages in children and adults. Respiratory Research, 2005, 6, 138.	3.6	30
146	Interstitial lung disease in children – genetic background and associated phenotypes. Respiratory Research, 2005, 6, 32.	3.6	51
147	Expression profiles of hydrophobic surfactant proteins in children with diffuse chronic lung disease. Respiratory Research, 2005, 6, 80.	3.6	22
148	Pulmonary Surfactant, Lung Function, and Endobronchial Inflammation in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1000-1005.	5.6	73
149	Improvement of Alveolar Glutathione and Lung Function but Not Oxidative State in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 822-828.	5.6	104
150	Effect of Treatment with Dornase Alpha on Airway Inflammation in Patients with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 719-725.	5.6	154
151	CYTOKINE STIMULATION BYPSEUDOMONAS AERUGINOSA—STRAIN VARIATION AND MODULATION BY PULMONARY SURFACTANT. Experimental Lung Research, 2004, 30, 163-179.	1.2	15
152	Exhaled breath condensate. Pediatric Pulmonology, 2004, 37, 14-15.	2.0	3
153	Mutation of <i>SFTPC</i> in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease. American Journal of Medical Genetics Part A, 2004, 126A, 18-26.	2.4	121
154	Analysis of 40 sporadic or familial neonatal and pediatric cases with severe unexplained respiratory distress: Relationship toSFTPB. American Journal of Medical Genetics Part A, 2003, 119A, 324-339.	2.4	47
155	Elemental and ion composition of exhaled AIR condensate in cystic fibrosis. Journal of Cystic Fibrosis, 2003, 2, 136-142.	0.7	23
156	Surfactant Protein A and D Differently Regulate the Immune Response to Nonmucoid <i>Pseudomonas aeruginosa</i> and Its Lipopolysaccharide. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 249-256.	2.9	88
157	Respiratory Syncytial Virus and Pulmonary Surfactant. Viral Immunology, 2002, 15, 357-363.	1.3	40
158	Surfactant Proteins A and D in Children with Pulmonary Disease due to Gastroesophageal Reflux. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1546-1550.	5.6	56
159	Protein pattern of exhaled breath condensate and saliva. Proteomics, 2002, 2, 690-696.	2.2	72
160	Eradication of initial Pseudomonas aeruginosa colonization in patients with cystic fibrosis. European Journal of Medical Research, 2002, 7, 79-80.	2.2	31
161	Uptake of a natural surfactant and increased delivery of small organic anions into type II pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L144-L154.	2.9	2
162	Reduced proteolysis of surfactant protein A and changes of the bronchoalveolar lavage fluid proteome by inhaled α1-protease inhibitor in cystic fibrosis. Electrophoresis, 2001, 22, 165-171.	2.4	50

#	Article	IF	CITATIONS
163	Pulmonary complications after bone marrow transplantation in children: Twenty-four years of experience in a single pediatric center. Pediatric Pulmonology, 2000, 30, 393-401.	2.0	128
164	CompoundSFTPB 1549C?GAA (121ins2) and 457delC heterozygosity in severe congenital lung disease and surfactant protein B (SP-B) deficiency. , 1999, 14, 502-509.		48
165	Cibacron blue stimulation of surfactant secretion in rat type II pneumocytes. British Journal of Pharmacology, 1992, 106, 373-379.	5.4	2
166	Genetic testing in interstitial lung disease: An international survey. Respirology, 0, , .	2.3	10