Paula Elomaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/723525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A TCP domain transcription factor controls flower type specification along the radial axis of the <i>Gerbera</i> (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9117-9122.	7.1	229
2	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	21.4	221
3	Organ identity genes and modified patterns of flower development inGerbera hybrida(Asteraceae). Plant Journal, 1999, 17, 51-62.	5.7	220
4	New pathway to polyketides in plants. Nature, 1998, 396, 387-390.	27.8	186
5	Mutation in <i>TERMINAL FLOWER1</i> Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry <i>Fragaria vesca</i> Â Â. Plant Physiology, 2012, 159, 1043-1054.	4.8	158
6	Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology, 1993, 22, 183-193.	3.9	151
7	Activation of Anthocyanin Biosynthesis in Gerbera hybrida (Asteraceae) Suggests Conserved Protein-Protein and Protein-Promoter Interactions between the Anciently Diverged Monocots and Eudicots. Plant Physiology, 2003, 133, 1831-1842.	4.8	137
8	Evolution and Diversification of the CYC/TB1 Gene Family in AsteraceaeA Comparative Study in Gerbera (Mutisieae) and Sunflower (Heliantheae). Molecular Biology and Evolution, 2012, 29, 1155-1166.	8.9	127
9	GEG Participates in the Regulation of Cell and Organ Shape during Corolla and Carpel Development in Gerbera hybrida. Plant Cell, 1999, 11, 1093-1104.	6.6	125
10	Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15817-15822.	7.1	113
11	The <i>Fragaria vesca</i> Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth. Plant Cell, 2013, 25, 3296-3310.	6.6	113
12	Functional diversification of duplicated chalcone synthase genes in anthocyanin biosynthesis of <i>Gerbera hybrida</i> . New Phytologist, 2014, 201, 1469-1483.	7.3	104
13	Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Molecular Biology, 1995, 28, 47-60.	3.9	99
14	Functional diversification of duplicated <scp>CYC</scp> 2 clade genes in regulation of inflorescence development in <i><scp>G</scp>erbera hybrida</i> (<scp>A</scp> steraceae). Plant Journal, 2014, 79, 783-796.	5.7	98
15	Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9033-9038.	7.1	94
16	ldentification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. Journal of Experimental Botany, 2008, 59, 3691-3703.	4.8	91
17	GRCD1, an AGL2-like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida. Plant Cell, 2000, 12, 1893-1902.	6.6	82
18	Agrobacterium-Mediated Transfer of Antisense Chalcone Synthase cDNA to Gerbera hybrida Inhibits Flower Pigmentation. Nature Biotechnology, 1993, 11, 508-511.	17.5	80

Paula Elomaa

#	Article	IF	CITATIONS
19	Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Research, 2005, 15, 475-486.	5.5	75
20	Transgene inactivation inPetunia hybrida is influenced by the properties of the foreign gene. Molecular Genetics and Genomics, 1995, 248, 649-656.	2.4	73
21	A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida(Asteraceae). Plant Journal, 1998, 16, 93-99.	5.7	71
22	Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biology, 2009, 9, 122.	3.6	65
23	Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Research and Technology, 2013, 45, 295-304.	2.7	64
24	Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch). BMC Plant Biology, 2009, 9, 18.	3.6	58
25	Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of Experimental Botany, 2010, 61, 75-85.	4.8	58
26	Virusâ€induced gene silencing for Asteraceae—a reverse genetics approach for functional genomics in <i>Gerbera hybrida</i> . Plant Biotechnology Journal, 2012, 10, 970-978.	8.3	54
27	<i><scp>TERMINAL FLOWER</scp>1</i> is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (<i>FragariaÁ</i> ×Â <i>ananassa</i> Duch.). Plant Biotechnology Journal, 2016, 14, 1852-1861.	8.3	52
28	Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biology, 2006, 6, 11.	3.6	51
29	Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research, 2018, 5, 36.	6.3	50
30	Co-opting floral meristem identity genes for patterning of the flower-like Asteraceae inflorescence. Plant Physiology, 2016, 172, pp.00779.2016.	4.8	49
31	Mining plant diversity: Cerbera as a model system for plant developmental and biosynthetic research. BioEssays, 2006, 28, 756-767.	2.5	48
32	Dissecting functions of <i><scp>SEPALLATA</scp></i> â€like <scp>MADS</scp> box genes in patterning of the pseudanthial inflorescence of <i>Gerbera hybrida</i> . New Phytologist, 2017, 216, 939-954.	7.3	46
33	Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biology, 2010, 10, 128.	3.6	44
34	Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biology, 2010, 10, 129.	3.6	44
35	Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca. Frontiers in Plant Science, 2014, 5, 271.	3.6	42
36	Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration. Annals of Botany, 2011, 107, 1491-1499.	2.9	38

Paula Elomaa

#	Article	IF	CITATIONS
37	Transcriptional analysis of petal organogenesis in Gerbera hybrida. Planta, 2007, 226, 347-360.	3.2	35
38	A corolla-and carpel-abundant, non-specific lipid transfer protein gene is expressed in the epidermis and parenchyma of Gerbera hybrida var. Regina (Compositae). Plant Molecular Biology, 1994, 26, 971-978.	3.9	33
39	Reproductive meristem fates in Gerbera. Journal of Experimental Botany, 2006, 57, 3445-3455.	4.8	33
40	Molecular Control of Inflorescence Development in Asteraceae. Advances in Botanical Research, 2014, 72, 297-333.	1.1	33
41	TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in <i>Gerbera hybrida</i> . Plant Physiology, 2020, 184, 1455-1468.	4.8	33
42	Phyllotactic patterning of gerbera flower heads. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
43	Transformation of antisense constructs of the chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Molecular Breeding, 1996, 2, 41.	2.1	29
44	Anthocyanin biosynthesis in gerbera cultivar â€~Estelle' and its acyanic sport â€~Ivory'. Planta, 2015, 242, 601-611.	3.2	29
45	Modification of <i>Tobacco rattle virus</i> RNA1 to Serve as a VIGS Vector Reveals That the 29K Movement Protein Is an RNA Silencing Suppressor of the Virus. Molecular Plant-Microbe Interactions, 2013, 26, 503-514.	2.6	25
46	Altered regulation of TERMINAL FLOWER 1 causes the unique vernalisation response in an arctic woodland strawberry accession. New Phytologist, 2017, 216, 841-853.	7.3	24
47	Modification of Flower Colour using Genetic Engineering. Biotechnology and Genetic Engineering Reviews, 1994, 12, 63-88.	6.2	22
48	Evolutionary diversification of <i>CYC/TB1</i> â€like TCP homologs andÂtheir recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist, 2018, 220, 317-331.	7.3	22
49	Floral Developmental Genetics of Gerbera (Asteraceae). Advances in Botanical Research, 2006, , 323-351.	1.1	16
50	Gerbera hybrida (Asteraceae) imposes regulation at several anatomical levels during inflorescence development on the gene for dihydroflavonol-4-reductase. Plant Molecular Biology, 1995, 28, 935-941.	3.9	15
51	Effects of LED light spectra on lettuce growth and nutritional composition. Lighting Research and Technology, 2018, 50, 880-893.	2.7	15
52	Don't be fooled: false flowers in Asteraceae. Current Opinion in Plant Biology, 2021, 59, 101972.	7.1	14
53	Phyllotaxis without symmetry: what can we learn from flower heads?. Journal of Experimental Botany, 2022, 73, 3319-3329.	4.8	9
54	Expression of xyloglucan endotransglycosylases of Gerbera hybrida and Betula pendula in Pichia pastoris. Journal of Biotechnology, 2007, 130, 161-170.	3.8	7

PAULA ELOMAA

#	Article	IF	CITATIONS
55	GEG Participates in the Regulation of Cell and Organ Shape during Corolla and Carpel Development in Gerbera hybrida. Plant Cell, 1999, 11, 1093.	6.6	6
56	PLANTING YEAR PROHEXADIONE-CALCIUM TREATMENT INCREASES THE CROPPING POTENTIAL AND YIELD OF STRAWBERRY. Acta Horticulturae, 2009, , 741-744.	0.2	5
57	Genetic purity of common bean seed generations (Phaseolus vulgaris cv. 'INTA ROJO') as tested with microsatellite markers. Seed Science and Technology, 2012, 40, 73-85.	1.4	4
58	Plant biotechnology for deeper understanding, wider use and further development of agricultural and horticultural crops. Agricultural and Food Science, 2008, 17, 307.	0.9	3
59	Repatterning of the inflorescence meristem in Gerbera hybrida after wounding. Journal of Plant Research, 2021, 134, 431-440.	2.4	2
60	GRCD1, an AGL2-Like MADS Box Gene, Participates in the C Function during Stamen Development in Gerbera hybrida. Plant Cell, 2000, 12, 1893.	6.6	1
61	Genetic diversity of native cultivated cacao accessions (Theobroma cacao L.) in Nicaragua. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 254-257.	0.8	1
62	My favourite flowering image: a capitulum of Asteraceae. Journal of Experimental Botany, 2019, 70, e6496-e6498.	4.8	1
63	Understanding capitulum development: Gerbera hybrida inflorescence meristem as an experimental system. Capitulum, 2022, 1, .	0.1	1
64	IDENTIFICATION OF FLOWERING RELATED CANDIDATE GENES FROM FRAGARIA VESCA USING EST SEQUENCING. Acta Horticulturae, 2009, , 459-462.	0.2	0
65	Gerberan karvasaineet suojaavat hyönteisherbivorialta. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-5.	0.0	0
66	Ahomansikan kukintaan vaikuttavien geenien karakterisointi. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-5.	0.0	0
67	Mansikan kukintageenien identifiointi. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-4.	0.0	0
68	Valon spektri s̮elee ahomansikan (Fragaria vesca L.) r̦nsynmuodostusta ja kukintainduktiota. Suomen Maataloustieteellisen Seuran Tiedote, 2010, , 1-4.	0.0	0