Catherine Marchand-Leroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235193/publications.pdf

Version: 2024-02-01

35 papers

1,885

236925 25 h-index 35 g-index

36 all docs 36 docs citations

36 times ranked

2481 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Prothrombin Complex Concentrate and Recombinant Activated Factor VII to Reverse Rivaroxaban in a Rabbit Model. Anesthesiology, 2012, 116, 94-102.	2.5	250
2	Blockade of Acute Microglial Activation by Minocycline Promotes Neuroprotection and Reduces Locomotor Hyperactivity after Closed Head Injury in Mice: A Twelve-Week Follow-Up Study. Journal of Neurotrauma, 2010, 27, 911-921.	3.4	140
3	Neurological Recovery-Promoting, Anti-Inflammatory, and Anti-Oxidative Effects Afforded by Fenofibrate, a PPAR Alpha Agonist, in Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 1119-1131.	3.4	131
4	Minocycline effects on cerebral edema: Relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Research, 2009, 1291, 122-132.	2.2	131
5	Progesterone Receptors: A Key for Neuroprotection in Experimental Stroke. Endocrinology, 2012, 153, 3747-3757.	2.8	111
6	Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. International Journal of Cardiology, 2013, 168, 4228-4233.	1.7	96
7	Evaluation of late cognitive impairment and anxiety states following traumatic brain injury in mice: The effect of minocycline. Neuroscience Letters, 2012, 511, 110-115.	2.1	92
8	Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PLoS ONE, 2017, 12, e0184811.	2.5	86
9	Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neuroscience Letters, 2007, 424, 106-110.	2.1	66
10	CB1 and CB2 Cannabinoid Receptor Antagonists Prevent Minocycline-Induced Neuroprotection Following Traumatic Brain Injury in Mice. Cerebral Cortex, 2015, 25, 35-45.	2.9	64
11	Minocycline Restores sAPPα Levels and Reduces the Late Histopathological Consequences of Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2011, 28, 2135-2143.	3.4	61
12	Housekeeping while brain's storming Validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Molecular Biology, 2008, 9, 62.	3.0	58
13	Simvastatin in traumatic brain injury: Effect on brain edema mechanisms. Critical Care Medicine, 2011, 39, 2300-2307.	0.9	49
14	Combination Therapy with Fenofibrate, a Peroxisome Proliferator-Activated Receptor α Agonist, and Simvastatin, a 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase Inhibitor, on Experimental Traumatic Brain Injury. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 966-974.	2.5	46
15	Temporal and Regional Changes after Focal Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27, 85-94.	3.4	46
16	Minocycline Restores Olfactory Bulb Volume and Olfactory Behavior after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2012, 29, 354-361.	3.4	38
17	Etazolate, an \hat{l} ±-secretase activator, reduces neuroinflammation and offers persistent neuroprotection following traumatic brain injury in mice. Neuropharmacology, 2013, 67, 183-192.	4.1	38
18	Experimental modeling of recombinant tissue plasminogen activator effects after ischemic stroke. Experimental Neurology, 2012, 238, 138-144.	4.1	33

#	Article	IF	Citations
19	Long-term histological and behavioural characterisation of a collagenase-induced model of intracerebral haemorrhage in rats. Journal of Neuroscience Methods, 2010, 191, 180-190.	2.5	32
20	Effect of Acute Poly(ADP-Ribose) Polymerase Inhibition by 3-AB on Blood–Brain Barrier Permeability and Edema Formation after Focal Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2010, 27, 1069-1079.	3.4	32
21	Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain, Behavior, and Immunity, 2018, 73, 375-389.	4.1	30
22	Effects of selective and non-selective cyclooxygenase inhibition against neurological deficit and brain oedema following closed head injury in mice. Brain Research, 2013, 1491, 78-87.	2.2	29
23	Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice. Molecular Neurobiology, 2018, 55, 9156-9168.	4.0	29
24	Combined therapy with PJ34, a poly(ADPâ€ribose)polymerase inhibitor, reduces tissue plasminogen activatorâ€induced hemorrhagic transformations in cerebral ischemia in mice. Fundamental and Clinical Pharmacology, 2013, 27, 393-401.	1.9	27
25	Prevention of rt-PA induced blood–brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice. Experimental Neurology, 2013, 248, 416-428.	4.1	26
26	Neurological and Histological Consequences Induced by In Vivo Cerebral Oxidative Stress: Evidence for Beneficial Effects of SRT1720, a Sirtuin 1 Activator, and Sirtuin 1-Mediated Neuroprotective Effects of Poly(ADP-ribose) Polymerase Inhibition. PLoS ONE, 2014, 9, e87367.	2.5	26
27	Histological and Behavioral Evaluation after Traumatic Brain Injury in Mice: A Ten Months Follow-Up Study. Journal of Neurotrauma, 2020, 37, 1342-1357.	3.4	22
28	Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection?. Fundamental and Clinical Pharmacology, 2021, 35, 524-538.	1.9	22
29	Behavioral tests that reveal long-term deficits after permanent focal cerebral ischemia in mouse. Behavioural Brain Research, 2019, 360, 69-80.	2.2	20
30	Effect of an immune-enhancing diet on lymphocyte in head-injured rats: What is the role of arginine?. Intensive Care Medicine, 2007, 33, 1076-1084.	8.2	19
31	Evidence for Impairment of Hepatic Energy Homeostasis in Head-Injured Rat. Journal of Neurotrauma, 2008, 25, 124-129.	3.4	15
32	Recombinant tissue plasminogen activator enhances microparticle release from mouse brain-derived endothelial cells through plasmin. Journal of the Neurological Sciences, 2016, 370, 187-195.	0.6	6
33	Another "String to the Bow―of PJ34, a Potent Poly(ADP-Ribose)Polymerase Inhibitor: An Antiplatelet Effect through P2Y12 Antagonism?. PLoS ONE, 2014, 9, e110776.	2.5	6
34	Insulin-like Growth Factors may be Markers of both Traumatic Brain Injury and Fear-Related Stress. Neuroscience, 2021, 466, 205-221.	2.3	5
35	From positron emission tomography to cell analysis of the 18-kDa Translocator Protein in mild traumatic brain injury. Scientific Reports, 2021, 11, 24009.	3.3	3