Min Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7235129/publications.pdf

Version: 2024-02-01

		218677	175258
58	3,972	26	52
papers	citations	h-index	g-index
60	60	60	5042
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunology Research, 2019, 7, 737-750.	3.4	691
2	ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Molecular Cancer, 2017, 16, 79.	19.2	452
3	IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Frontiers in Immunology, 2021, 12, 687975.	4.8	361
4	Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage l–III colon cancer. Cancer Immunology, Immunotherapy, 2019, 68, 433-442.	4.2	209
5	Cysteine Dioxygenase 1 Mediates Erastin-Induced Ferroptosis in Human Gastric Cancer Cells. Neoplasia, 2017, 19, 1022-1032.	5. 3	202
6	MSC-regulated IncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 2019, 38, 4637-4654.	5. 9	201
7	The IncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Molecular Cancer, 2018, 17, 69.	19.2	189
8	Doxorubicin‣oaded Single Wall Nanotube Thermoâ€Sensitive Hydrogel for Gastric Cancer Chemoâ€Photothermal Therapy. Advanced Functional Materials, 2015, 25, 4730-4739.	14.9	117
9	IncRNA SNHG11 Promotes Gastric Cancer Progression by Activating the Wnt/ \hat{l}^2 -Catenin Pathway and Oncogenic Autophagy. Molecular Therapy, 2021, 29, 1258-1278.	8.2	112
10	Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion. International Journal of Cancer, 2013, 133, 1419-1430.	5.1	108
11	Macrophage correlates with immunophenotype and predicts anti-PD-L1 response of urothelial cancer. Theranostics, 2020, 10, 7002-7014.	10.0	108
12	Long noncoding RNA (lncRNA) <i>EIF3J-DT</i> induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021, 17, 4083-4101.	9.1	107
13	IGF1/IGF1R/STAT3 signaling-inducible IFITM2 promotes gastric cancer growth and metastasis. Cancer Letters, 2017, 393, 76-85.	7.2	81
14	Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Letters, 2016, 381, 31-40.	7.2	80
15	Adipocytes fuel gastric cancer omental metastasis <i>via</i> PITPNC1-mediated fatty acid metabolic reprogramming. Theranostics, 2018, 8, 5452-5468.	10.0	68
16	Voltageâ€gated sodium channel Na _v 1.7 promotes gastric cancer progression through MACC1â€mediated upregulation of NHE1. International Journal of Cancer, 2016, 139, 2553-2569.	5.1	64
17	Metabolic networks in ferroptosis (Review). Oncology Letters, 2018, 15, 5405-5411.	1.8	63
18	Gold Nanoparticles Induce Tumor Vessel Normalization and Impair Metastasis by Inhibiting Endothelial Smad2/3 Signaling. ACS Nano, 2020, 14, 7940-7958.	14.6	62

#	Article	IF	CITATIONS
19	Fluid shear stress and tumor metastasis. American Journal of Cancer Research, 2018, 8, 763-777.	1.4	58
20	Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. International Journal of Nanomedicine, 2018, Volume 13, 1119-1137.	6.7	50
21	ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death and Disease, 2019, 10, 173.	6.3	47
22	A robust panel based on tumour microenvironment genes for prognostic prediction and tailoring therapies in stage lâ€"III colon cancer. EBioMedicine, 2019, 42, 420-430.	6.1	46
23	Flotillin-2 promotes nasopharyngeal carcinoma metastasis and is necessary for the epithelial-mesenchymal transition induced by transforming growth factor-1 ² . Oncotarget, 2015, 6, 9781-9793.	1.8	44
24	Inhibition of <scp>SLC1A</scp> 5 sensitizes colorectal cancer to cetuximab. International Journal of Cancer, 2018, 142, 2578-2588.	5.1	38
25	Theranostic, pH-Responsive, Doxorubicin-Loaded Nanoparticles Inducing Active Targeting and Apoptosis for Advanced Gastric Cancer. Biomacromolecules, 2015, 16, 4022-4031.	5.4	37
26	MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget, 2016, 7, 18085-18094.	1.8	36
27	Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncolmmunology, 2021, 10, 1951019.	4.6	33
28	Shear stress activates ATOH8 via autocrine VEGF promoting glycolysis dependent-survival of colorectal cancer cells in the circulation. Journal of Experimental and Clinical Cancer Research, 2020, 39, 25.	8.6	30
29	Silencing of XB130 Is Associated with Both the Prognosis and Chemosensitivity of Gastric Cancer. PLoS ONE, 2012, 7, e41660.	2.5	28
30	Disrupting Circadian Rhythm via the PER1–HK2 Axis Reverses Trastuzumab Resistance in Gastric Cancer. Cancer Research, 2022, 82, 1503-1517.	0.9	25
31	MACC1 mediates chemotherapy sensitivity of 5-FU and cisplatin via regulating MCT1 expression in gastric cancer. Biochemical and Biophysical Research Communications, 2017, 485, 665-671.	2.1	23
32	Depression accelerates gastric cancer invasion and metastasis by inducing a neuroendocrine phenotype via the catecholamine \hat{l}^2 sub>2 \hat{a} AR/MACC1 axis. Cancer Communications, 2021, 41, 1049-1070.	9.2	23
33	TOP1MT deficiency promotes GC invasion and migration via the enhancements of LDHA expression and aerobic glycolysis. Endocrine-Related Cancer, 2017, 24, 565-578.	3.1	21
34	CRIP1 cooperates with BRCA2 to drive the nuclear enrichment of RAD51 and to facilitate homologous repair upon DNA damage induced by chemotherapy. Oncogene, 2021, 40, 5342-5355.	5.9	19
35	Clinical significance of accurate identification of lymph node status in distant metastatic gastric cancer. Oncotarget, 2016, 7, 1029-1041.	1.8	18
36	A stromaâ€related IncRNA panel for predicting recurrence and adjuvant chemotherapy benefit in patients with earlyâ€stage colon cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 3229-3241.	3.6	18

#	Article	IF	CITATIONS
37	MACC-1 Promotes Endothelium-Dependent Angiogenesis in Gastric Cancer by Activating TWIST1/VEGF-A Signal Pathway. PLoS ONE, 2016, 11, e0157137.	2.5	18
38	Single-cell analysis of a tumor-derived exosome signature correlates with prognosis and immunotherapy response. Journal of Translational Medicine, 2021, 19, 381.	4.4	14
39	Gastric cancer cells escape metabolic stress via the DLC3/MACC1 axis. Theranostics, 2019, 9, 2100-2114.	10.0	11
40	Immunosuppressive Microenvironment Revealed by Immune Cell Landscape in Pre-metastatic Liver of Colorectal Cancer. Frontiers in Oncology, 2021, 11, 620688.	2.8	9
41	PET/CT Imaging of Activated Cancer-Associated Fibroblasts Predict Response to PD-1 Blockade in Gastric Cancer Patients. Frontiers in Oncology, 2021, 11, 802257.	2.8	9
42	Impact of liver tumor percutaneous radiofrequency ablation on circulating tumor cells. Oncology Letters, 2018, 16, 2839-2850.	1.8	8
43	Pancreatic Adverse Events Associated With Immune Checkpoint Inhibitors: A Large-Scale Pharmacovigilance Analysis. Frontiers in Pharmacology, 2022, 13, 817662.	3.5	8
44	Remodeling Chondroitin-6-Sulfate–Mediated Immune Exclusion Enhances Anti–PD-1 Response in Colorectal Cancer with Microsatellite Stability. Cancer Immunology Research, 2022, 10, 182-199.	3.4	8
45	Polymer Selfâ€Assembled BMSCs with Cancer Tropism and Programmed Homing. Advanced Healthcare Materials, 2018, 7, e1800118.	7.6	5
46	MET transcriptional regulator/serine peptidase inhibitor kunitz type 1 panel operating through HGF/câ€MET axis as a prognostic signature in panâ€cancer. Cancer Medicine, 2021, 10, 2442-2460.	2.8	4
47	A novel assessing system for predicting the prognosis of gastric cancer. Epigenomics, 2019, 11, 1251-1266.	2.1	2
48	Effect of MiR-338-3p on epithelial-mesenchymal transition in gastric cancer cells by targeting <i>ZEB2</i> and <i>MACC1</i> and regulation of MACC1/c-Met signaling. Journal of Clinical Oncology, 2014, 32, e22010-e22010.	1.6	1
49	The role of MACC1 in regulating gastric cancer cell senescence Journal of Clinical Oncology, 2014, 32, e15027-e15027.	1.6	1
50	Flotillin-2 role in nasopharyngeal carcinoma metastasis and correlation with poor survival outcomes Journal of Clinical Oncology, 2014, 32, e17050-e17050.	1.6	1
51	Regulation of trastuzumab resistance in gastric cancer by the PTEN gene, downstream AKT, and bypass IGF-IR signaling pathway Journal of Clinical Oncology, 2014, 32, e22079-e22079.	1.6	1
52	Escape of gastric cancer cell from metabolic stress via DLC3/MACC1 axis Journal of Clinical Oncology, 2017, 35, e15550-e15550.	1.6	1
53	Tumor and microenvironment evolution during chemotherapy combine with bevacizumab in colorectal cancer liver metastasis Journal of Clinical Oncology, 2019, 37, 3568-3568.	1.6	1
54	Epithelial circulating tumor cells in portal vein are associated with number of liver metastatic nodules of colorectal cancer Journal of Clinical Oncology, 2017, 35, e15026-e15026.	1.6	0

#	Article	IF	CITATIONS
55	Unraveling metabolism heterogeneity in colorectal cancer and its implications in pan-cancer cohort Journal of Clinical Oncology, 2020, 38, e16016-e16016.	1.6	0
56	Macrophage determines immnophenotype and predicts anti-PD-L1 response of urothelial cancer: Results from phase II clinical trial Journal of Clinical Oncology, 2020, 38, e15093-e15093.	1.6	0
57	Tumor microenvironment evaluation to predict pembrolizumab benefit of metastatic gastric cancer: Results from phase II clinical trial Journal of Clinical Oncology, 2020, 38, 425-425.	1.6	O
58	Evolution of tumor microenvironment in colorectal liver metastases under treatment stress. Cancer Communications, 2022, , .	9.2	O