
Jordi Gamir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7234269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The â€~prime-ome': towards a holistic approach to priming. Trends in Plant Science, 2015, 20, 443-452.	8.8	287
2	The sterolâ€binding activity of PATHOGENESISâ€RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant Journal, 2017, 89, 502-509.	5.7	156
3	Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology, 2015, 6, 598.	3.5	111
4	Preparing to fight back: generation and storage of priming compounds. Frontiers in Plant Science, 2014, 5, 295.	3.6	104
5	Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiology and Biochemistry, 2012, 61, 169-179.	5.8	80
6	Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Reports, 2014, 33, 1935-1949.	5.6	61
7	Different metabolic and genetic responses in citrus may explain relative susceptibility to <i>Tetranychus urticae</i> . Pest Management Science, 2014, 70, 1728-1741.	3.4	57
8	Targeting novel chemical and constitutive primed metabolites against <i><scp>P</scp>lectosphaerella cucumerina</i> . Plant Journal, 2014, 78, 227-240.	5.7	56
9	<i><scp>T</scp>etranychus urticae</i> â€ŧriggered responses promote genotypeâ€dependent conspecific repellence or attractiveness in citrus. New Phytologist, 2015, 207, 790-804.	7.3	52
10	The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Frontiers in Microbiology, 2016, 7, 1598.	3.5	49
11	Systemic resistance in citrus to <i>Tetranychus urticae</i> induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. Journal of Experimental Botany, 2016, 67, 5711-5723.	4.8	43
12	Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina. Frontiers in Plant Science, 2014, 5, 231.	3.6	42
13	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	5.7	35
14	Roots drive oligogalacturonideâ€induced systemic immunity in tomato. Plant, Cell and Environment, 2021, 44, 275-289.	5.7	35
15	Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indoleâ€3â€carboxylic acid in response to <i>Plectosphaerella cucumerina</i> infection. Plant Journal, 2018, 96, 518-531.	5.7	34
16	Role of two UDP-Glycosyltransferases from the L group of arabidopsis in resistance against pseudomonas syringae. European Journal of Plant Pathology, 2014, 139, 707-720.	1.7	32
17	Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. Plant Methods, 2018, 14, 33.	4.3	25
18	Accumulating evidences of callose priming by indole- 3- carboxylic acid in response to <i>Plectospharella cucumerina</i> . Plant Signaling and Behavior, 2019, 14, 1608107.	2.4	16

Jordi Gamir

#	Article	IF	CITATIONS
19	Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. Frontiers in Plant Science, 2020, 11, 529.	3.6	15
20	Extracellular DNA as an elicitor of broad-spectrum resistance in Arabidopsis thaliana. Plant Science, 2021, 312, 111036.	3.6	15
21	Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. Frontiers in Plant Science, 2021, 12, 657451.	3.6	13
22	1-Methyltryptophan Modifies Apoplast Content in Tomato Plants Improving Resistance Against Pseudomonas syringae. Frontiers in Microbiology, 2018, 9, 2056.	3.5	8
23	The plasticity of priming phenomenon activates not only common metabolomic fingerprint but also specific responses against <i>P. cucumerina</i> . Plant Signaling and Behavior, 2014, 9, e28916.	2.4	6
24	Untangling plant immune responses through metabolomics. Advances in Botanical Research, 2021, 98, 73-105.	1.1	4
25	The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses. Planta, 2022, 256, .	3.2	3