Todd M Przybycien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7234148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viral adventitious agent detection using laser force cytology: Intrinsic cell property changes with infection and comparison to in vitro testing. Biotechnology and Bioengineering, 2022, 119, 134-144.	3.3	4
2	Enhanced filtration performance using <scp>feedâ€andâ€bleed</scp> configuration for purification of antibody precipitates. Biotechnology Progress, 2021, 37, e3082.	2.6	8
3	High throughput solubility and redissolution screening for antibody purification via combined <scp>PEG</scp> and zinc chloride precipitation. Biotechnology Progress, 2020, 36, e3041.	2.6	16
4	Continuous precipitation for monoclonal antibody capture using countercurrent washing by microfiltration. Biotechnology Progress, 2019, 35, e2886.	2.6	39
5	Flow regime transitions and effects on solute transport in surfactant-driven Marangoni flows. Journal of Colloid and Interface Science, 2019, 553, 136-147.	9.4	14
6	Dispersion in steady and time-oscillatory two-dimensional flows through a parallel-plate channel. Physics of Fluids, 2019, 31, 022007.	4.0	23
7	Evolution and disappearance of solvent drops on miscible polymer subphases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 266-275.	4.7	4
8	Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Current Opinion in Colloid and Interface Science, 2018, 36, 58-69.	7.4	33
9	<i>Moringa oleifera</i> Seed Protein Adsorption to Silica: Effects of Water Hardness, Fractionation, and Fatty Acid Extraction. Langmuir, 2018, 34, 4852-4860.	3.5	12
10	Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport. Journal of Chromatography A, 2018, 1546, 77-88.	3.7	5
11	Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity. Journal of Chromatography A, 2018, 1546, 89-96.	3.7	3
12	Aerosolizing Lipid Dispersions Enables Antibiotic Transport Across Mimics of the Lung Airway Surface Even in the Presence of Pre-existing Lipid Monolayers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 212-220.	1.4	11
13	Effect of humic acids on the kaolin coagulation performance of Moringa oleifera proteins. Journal of Environmental Chemical Engineering, 2018, 6, 4564-4572.	6.7	8
14	Polyclonal and monoclonal IgG binding on protein A resins—Evidence of competitive binding effects. Biotechnology and Bioengineering, 2017, 114, 1803-1812.	3.3	17
15	Transport of a partially wetted particle at the liquid/vapor interface under the influence of an externally imposed surfactant generated Marangoni stress. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 49-60.	4.7	14
16	Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. Journal of Colloid and Interface Science, 2016, 484, 270-278.	9.4	19
17	Comparative coagulation performance study of Moringa oleifera cationic protein fractions with varying water hardness. Journal of Environmental Chemical Engineering, 2016, 4, 4690-4698.	6.7	35
18	Effect of polyelectrolyte–surfactant complexation on Marangoni transport at a liquid–liquid interface. Journal of Colloid and Interface Science, 2016, 467, 105-114.	9.4	15

TODD M PRZYBYCIEN

#	Article	IF	CITATIONS
19	Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow. Journal of Colloid and Interface Science, 2016, 462, 75-87.	9.4	10
20	Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 394-405.	1.4	10
21	Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 1: High Deposition Flux Representative of Aerosol Delivery to Large Airways. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 382-393.	1.4	16
22	Toward improving selectivity in affinity chromatography with <scp>PEG</scp> ylated affinity ligands: The performance of <scp>PEG</scp> ylated protein A. Biotechnology Progress, 2014, 30, 1364-1379.	2.6	11
23	Separation of PEGylated variants of ribonuclease A and apo-α-lactalbumin via reversed phase chromatography. Journal of Chromatography A, 2014, 1360, 209-216.	3.7	12
24	Towards optimal aqueous twoâ€phase extraction system flowsheets for protein purification. Journal of Chemical Technology and Biotechnology, 2013, 88, 62-71.	3.2	7
25	Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases. ACS Applied Materials & Interfaces, 2013, 5, 5542-5549.	8.0	23
26	Imaging the Postdeposition Dispersion of an Inhaled Surfactant Aerosol. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 290-296.	1.4	14
27	Autophobing on Liquid Subphases Driven by the Interfacial Transport of Amphiphilic Molecules. Langmuir, 2012, 28, 15212-15221.	3.5	18
28	Coverage-dependent morphology of PEGylated lysozyme layers adsorbed on silica. Journal of Colloid and Interface Science, 2012, 370, 170-175.	9.4	5
29	Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery. Molecular Pharmaceutics, 2011, 8, 387-394.	4.6	44
30	The Conformation of the Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and Mono-PEGylated Human Growth Hormone. Bioconjugate Chemistry, 2011, 22, 2317-2323.	3.6	80
31	Flowsheet simulation of aqueous twoâ€phase extraction systems for protein purification. Journal of Chemical Technology and Biotechnology, 2010, 85, 1575-1587.	3.2	11
32	Protein PEGylation Attenuates Adsorption and Aggregation on a Negatively Charged and Moderately Hydrophobic Polymer Surface. Langmuir, 2010, 26, 18231-18238.	3.5	30
33	Poly(ethylene glycol)-Modified Proteins: Implications for Poly(lactide-co-glycolide)-Based Microsphere Delivery. AAPS Journal, 2009, 11, 88-98.	4.4	45
34	Skin-Color-Compensated Colorimeter for Detection and Classification of Pressure Ulcers. , 2008, , .		3
35	Design of acoustic wave biochemical sensors using micro-electro-mechanical systems. Journal of Applied Physics, 2007, 101, 064508.	2.5	2
36	Protein instability during HIC: Hydrogen exchange labeling analysis and a framework for describing mobile and stationary phase effects. Biotechnology and Bioengineering, 2007, 96, 80-93.	3.3	34

TODD M PRZYBYCIEN

#	Article	IF	CITATIONS
37	Aggregation of lysozyme and of poly(ethylene glycol)-modified lysozyme after adsorption to silica. Colloids and Surfaces B: Biointerfaces, 2007, 57, 81-88.	5.0	40
38	Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Biotechnology and Bioengineering, 2005, 90, 856-868.	3.3	34
39	Adsorption of Poly(ethylene glycol)-Modified Lysozyme to Silica. Langmuir, 2005, 21, 1328-1337.	3.5	54
40	Rheology of transient networks containing hydrophobically modified cellulose, anionic surfactant and colloidal silica: role of selective adsorption. Rheologica Acta, 2004, 43, 50-61.	2.4	9
41	Protein unfolding at interfaces: Slow dynamics of α-helix to β-sheet transition. Proteins: Structure, Function and Bioinformatics, 2004, 56, 669-678.	2.6	144
42	Alternative bioseparation operations: life beyond packed-bed chromatography. Current Opinion in Biotechnology, 2004, 15, 469-478.	6.6	290
43	Coverage-Dependent Orientation of Lysozyme Adsorbed on Silica. Langmuir, 2003, 19, 3848-3857.	3.5	115
44	Effect of Flow on Human Serum Albumin Adsorption to Self-Assembled Monolayers of Varying Packing Density. Langmuir, 2003, 19, 5464-5474.	3.5	24
45	Coadsorption of Sodium Dodecyl Sulfate with Hydrophobically Modified Nonionic Cellulose Polymers. 2. Role of Surface Selectivity in Adsorption Hysteresis. Langmuir, 2003, 19, 2714-2721.	3.5	32
46	Coadsorption of Sodium Dodecyl Sulfate with Hydrophobically Modified Nonionic Cellulose Polymers. 1. Role of Polymer Hydrophobic Modification. Langmuir, 2003, 19, 2705-2713.	3.5	69
47	Structural Response of Bovine Growth Hormone to Dead-Ended Ultrafiltration. Separation Science and Technology, 2003, 38, 251-270.	2.5	2
48	Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis, 2002, 23, 2766-2776.	2.4	85
49	Self-interaction chromatography: A tool for the study of protein-protein interactions in bioprocessing environments. , 2000, 52, 193-203.		61
50	A Holistic Approach for Protein Secondary Structure Estimation from Infrared Spectra in H2O Solutions. Analytical Biochemistry, 2000, 285, 33-49.	2.4	109
51	Protein structure perturbations on chromatographic surfaces. Journal of Chromatography A, 1999, 849, 149-159.	3.7	43
52	Self-Assembled Monolayers on Polymer Surfaces:Â Kinetics, Functionalization, and Photopatterning. Langmuir, 1999, 15, 5323-5328.	3.5	23
53	A Holistic Approach to Protein Secondary Structure Characterization Using Amide I Band Raman Spectroscopy. Analytical Biochemistry, 1999, 269, 255-272.	2.4	112

Protein purification with vapor-phase carbon dioxide. , 1999, 62, 247-258.

44

TODD M PRZYBYCIEN

#	Article	IF	CITATIONS
55	Electroless Gold Plating of 316 L Stainless Steel Beads. Journal of the Electrochemical Society, 1999, 146, 2517-2521.	2.9	15
56	A Prototype Electrochemical Chromatographic Column for Use with Proteins. Analytical Chemistry, 1999, 71, 4272-4277.	6.5	4
57	Protein-protein interactions as a means of purification. Current Opinion in Biotechnology, 1998, 9, 164-170.	6.6	25
58	Long-term and high-temperature storage of supercritically-processed microparticulate protein powders. Pharmaceutical Research, 1997, 14, 1370-1378.	3.5	33
59	Adsorption of a Formulated Protein on a Drug Delivery Device Surface. Journal of Colloid and Interface Science, 1997, 189, 216-228.	9.4	60
60	A Model for Metal Affinity Protein Precipitation. Journal of Colloid and Interface Science, 1996, 177, 391-400.	9.4	17
61	Precipitation of Proteins in Supercritical Carbon Dioxide. Journal of Pharmaceutical Sciences, 1996, 85, 586-594.	3.3	185
62	Metal affinity protein precipitation: Effects of mixing, protein concentration, and modifiers on protein fractionation. Biotechnology and Bioengineering, 1995, 48, 324-332.	3.3	33
63	Towards an electrochemically modulated chromatographic stationary phase. Journal of Chromatography A, 1995, 707, 29-33.	3.7	9
64	Secondary Structure Characterization of Microparticulate Insulin Powdersâ€. Journal of Pharmaceutical Sciences, 1994, 83, 1651-1656.	3.3	67
65	Secondary structure characterization of ß-lactamase inclusion bodies. Protein Engineering, Design and Selection, 1994, 7, 131-136.	2.1	117
66	The Impact of Formulated Interleukin-2 / Delivery Device Surface Interactions on Bioefficacy. Materials Research Society Symposia Proceedings, 1993, 331, 227.	0.1	0
67	Aggregation kinetics in salt-induced protein precipitation. AICHE Journal, 1989, 35, 1779-1790.	3.6	28
68	Solubility-activity relationships in the inorganic salt-induced precipitation of α-chymotrypsin. Enzyme and Microbial Technology, 1989, 11, 264-276.	3.2	34