Qi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7233881/publications.pdf

Version: 2024-02-01

159585 123424 3,874 68 30 61 h-index citations g-index papers 68 68 68 4210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 2016, 9, 63-105.	3.9	465
2	Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 923-932.	0.6	431
3	Filtering Airborne Laser Scanning Data with Morphological Methods. Photogrammetric Engineering and Remote Sensing, 2007, 73, 175-185.	0.6	233
4	Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89, 49-58.	11.1	208
5	Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 2016, 176, 163-176.	11.0	145
6	Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. International Journal of Forestry Research, 2012, 2012, 1-16.	0.8	141
7	Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data. Photogrammetric Engineering and Remote Sensing, 2007, 73, 1355-1365.	0.6	130
8	Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sensing, 2018, 10, 627.	4.0	119
9	Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sensing of Environment, 2010, 114, 1610-1627.	11.0	117
10	Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach. Agricultural and Forest Meteorology, 2012, 152, 83-100.	4.8	112
11	Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sensing of Environment, 2015, 160, 134-143.	11.0	109
12	Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sensing, 2017, 9, 1304.	4.0	102
13	Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sensing of Environment, 2012, 121, 108-117.	11.0	88
14	Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environmental Pollution, 2016, 216, 519-529.	7. 5	87
15	Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sensing of Environment, 2011, 115, 2776-2785.	11.0	84
16	A Survey of Mobile Laser Scanning Applications and Key Techniques over Urban Areas. Remote Sensing, 2019, 11, 1540.	4.0	76
17	Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agricultural and Forest Meteorology, 2008, 148, 1005-1020.	4.8	67
18	Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference. Remote Sensing of Environment, 2016, 184, 350-360.	11.0	67

#	Article	IF	CITATIONS
19	Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 2016, 378, 44-56.	3.2	59
20	Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE, 2014, 9, e97910.	2.5	54
21	Supervised Classification of Power Lines from Airborne LiDAR Data in Urban Areas. Remote Sensing, 2017, 9, 771.	4.0	53
22	Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates. Remote Sensing, 2017, 9, 18.	4.0	50
23	Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65, 111-122.	11.1	49
24	Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs. Progress in Physical Geography, 2013, 37, 745-766.	3.2	43
25	Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon. International Journal of Digital Earth, 2017, 10, 996-1016.	3.9	43
26	Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 1106-1115.	6.3	40
27	Assessing vulnerability due to sea-level rise in Maui, Hawaiâ€~i using LiDAR remote sensing and GIS. Climatic Change, 2013, 116, 547-563.	3.6	40
28	Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications. Canadian Journal of Forest Research, 2018, 48, 642-649.	1.7	40
29	Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106, 95-106.	11.1	38
30	Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 371-379.	2.8	36
31	A new three-band spectral index for mitigating the saturation in the estimation of leaf area index in wheat. International Journal of Remote Sensing, 2017, 38, 3865-3885.	2.9	31
32	The shelf-life of airborne laser scanning data for enhancing forest inventory inferences. Remote Sensing of Environment, 2018, 206, 254-259.	11.0	31
33	Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages. Computers and Electronics in Agriculture, 2019, 165, 104959.	7.7	29
34	Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102132.	2.8	28
35	Systematic Comparison of Power Line Classification Methods from ALS and MLS Point Cloud Data. Remote Sensing, 2018, 10, 1222.	4.0	25
36	Visibility analysis of oceanic blue space using digital elevation models. Landscape and Urban Planning, 2019, 181, 92-102.	7.5	25

#	Article	IF	Citations
37	Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data. Remote Sensing, 2016, 8, 21.	4.0	24
38	Hyperspectral Estimation of Canopy Leaf Biomass Phenotype per Ground Area Using a Continuous Wavelet Analysis in Wheat. Frontiers in Plant Science, 2018, 9, 1360.	3.6	24
39	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	4.8	24
40	Multivariate inference for forest inventories using auxiliary airborne laser scanning data. Forest Ecology and Management, 2017, 401, 295-303.	3.2	23
41	The effects of global positioning system receiver accuracy on airborne laser scanning-assisted estimates of aboveground biomass. Remote Sensing of Environment, 2018, 207, 42-49.	11.0	21
42	Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: A case study in Kahului, Maui. Climatic Change, 2013, 121, 635-647.	3.6	20
43	Individual and Interactive Influences of Anthropogenic and Ecological Factors on Forest PM2.5 Concentrations at an Urban Scale. Remote Sensing, 2018, 10, 521.	4.0	19
44	Improvement of the Edgeâ€based Morphological (EM) method for lidar data filtering. International Journal of Remote Sensing, 2009, 30, 1069-1074.	2.9	18
45	A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada. Remote Sensing, 2018, 10, 1338.	4.0	18
46	Local validation of global biomass maps. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101931.	2.8	15
47	Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery. PLoS ONE, 2017, 12, e0185468.	2.5	15
48	Simulation of canopy CO2/H2O fluxes for a rubber (Hevea brasiliensis) plantation in central Cambodia: The effect of the regular spacing of planted trees. Ecological Modelling, 2013, 265, 124-135.	2.5	14
49	Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data. Remote Sensing of Environment, 2016, 184, 387-395.	11.0	14
50	A scalable cyberinfrastructure and cloud computing platform for forest aboveground biomass estimation based on the Google Earth Engine. International Journal of Digital Earth, 2019, 12, 995-1012.	3.9	14
51	Using a Finer Resolution Biomass Map to Assess the Accuracy of a Regional, Map-Based Estimate of Forest Biomass. Surveys in Geophysics, 2019, 40, 1001-1015.	4.6	14
52	An automatic method for counting wheat tiller number in the field with terrestrial LiDAR. Plant Methods, 2020, 16, 132.	4.3	13
53	Mapping Exposure to Flooding in Three Coastal Communities on the North Slope of Alaska Using Airborne LiDAR. Coastal Management, 2020, 48, 96-117.	2.0	12
54	A Hierarchical unsupervised method for power line classification from airborne LiDAR data. International Journal of Digital Earth, 2019, 12, 1406-1422.	3.9	11

#	Article	IF	CITATIONS
55	Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage. International Journal of Remote Sensing, 2021, 42, 4042-4063.	2.9	11
56	Optimizing nearest neighbour configurations for airborne laser scanning-assisted estimation of forest volume and biomass. Forestry, 2017, 90, 99-111.	2.3	9
57	Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models. Remote Sensing, 2018, 10, 1814.	4.0	9
58	Synergistic Use of Satellite Laser Altimetry and Shuttle Radar Topography Mission DEM for Estimating Ground Elevation Over Mountainous Vegetated Areas. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 481-485.	3.1	7
59	From a drone's eye view: indicators of overtourism in a sea, sun, and sand destination. Journal of Sustainable Tourism, 2023, 31, 1538-1555.	9.2	7
60	Statewide mapping and estimation of vegetation aboveground biomass using airborne lidar., 2016,,.		5
61	Estimation of forest aboveground biomass by using mixed-effects model. International Journal of Remote Sensing, 2021, 42, 8675-8690.	2.9	5
62	State of the State Tree: Historical and Modern Ecology of Kukui (Candlenut, Aleurites Moluccanus) in Hawaiâ€~i. Pacific Science, 2021, 74, .	0.6	4
63	Improving Plot-Level Model of Forest Biomass: A Combined Approach Using Machine Learning with Spatial Statistics. Forests, 2021, 12, 1663.	2.1	4
64	Differentiation of <i>Acacia koa</i> forest stands across an elevation gradient in Hawaiâ€i using fine-resolution remotely sensed imagery. International Journal of Remote Sensing, 2012, 33, 3492-3511.	2.9	3
65	Fine resolution remote sensing of species in terrestrial and coastal ecosystems. International Journal of Remote Sensing, 2018, 39, 5597-5599.	2.9	2
66	QuickBird image-based estimation of tree stand density using local maxima filtering method: A case study in a Beijing forest. PLoS ONE, 2018, 13, e0208256.	2.5	0
67	Preface of Special Issue on Laser Scanning. Applied Sciences (Switzerland), 2019, 9, 2713.	2.5	0
68	Stand density extraction and analysis of plantations based on QuickBird and Worldview-2 images. Journal of Applied Remote Sensing, 2020, 14, 1.	1.3	0