Ann Depicker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7231462/publications.pdf Version: 2024-02-01

ANN DEDICKED

#	Article	IF	CITATIONS
1	GATEWAYâ,,¢ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 2002, 7, 193-195.	8.8	3,390
2	Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 2007, 145, 1144-1154.	4.8	394
3	Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014, 32, 263-270.	9.3	341
4	T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant Journal, 1997, 11, 15-29.	5.7	242
5	Post-transcriptional gene silencing in plants. Current Opinion in Cell Biology, 1997, 9, 373-382.	5.4	238
6	Assembly of an antibody and its derived antibody fragment inNicotiana andArabidopsis. Transgenic Research, 1993, 2, 227-237.	2.4	164
7	Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nature Biotechnology, 2002, 20, 1265-1268.	17.5	162
8	The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant Journal, 1999, 20, 295-304.	5.7	140
9	Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Molecular Genetics and Genomics, 1985, 201, 477-484.	2.4	139
10	Stable high-level transgene expression inArabidopsis thalianausing gene silencing mutants and matrix attachment regions. Plant Journal, 2004, 39, 440-449.	5.7	139
11	Title is missing!. Molecular Breeding, 2000, 6, 459-468.	2.1	129
12	Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Molecular Biology, 2000, 43, 347-359.	3.9	128
13	Characterisation of the Roundup Ready soybean insert. European Food Research and Technology, 2001, 213, 107-112.	3.3	126
14	Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1430-1435.	7.1	116
15	Orally fed seeds producing designer IgAs protect weaned piglets against enterotoxigenic <i>Escherichia coli</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11809-11814.	7.1	114
16	T-DNA Integration in Arabidopsis Chromosomes. Presence and Origin of Filler DNA Sequences Â. Plant Physiology, 2003, 133, 2061-2068.	4.8	98
17	Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3' flanking regions. Plant Journal, 1997, 12, 379-392.	5.7	82
18	High level accumulation of single-chain variable fragments in the cytosol of transgenicPetunia hybrida. FEBS Journal, 1999, 259, 426-434.	0.2	78

#	Article	IF	CITATIONS
19	Epigenetic Switch from Posttranscriptional to Transcriptional Silencing Is Correlated with Promoter Hypermethylation. Plant Physiology, 2003, 133, 1240-1250.	4.8	73
20	The Tâ€DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant Journal, 2009, 60, 134-145.	5.7	70
21	The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Molecular Biology, 2000, 43, 419-428.	3.9	69
22	Agrobacterium tumefaciens Transformation and Cotransformation Frequencies of Arabidopsis thaliana Root Explants and Tobacco Protoplasts. Molecular Plant-Microbe Interactions, 1998, 11, 449-457.	2.6	67
23	Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Letters, 1996, 386, 5-10.	2.8	60
24	Determination of the T-DNA Transfer and the T-DNA Integration Frequencies upon Cocultivation of Arabidopsis thaliana Root Explants. Molecular Plant-Microbe Interactions, 2000, 13, 658-665.	2.6	59
25	Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Science, 1996, 114, 233-241.	3.6	57
26	Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Molecular Biology, 2001, 46, 433-445.	3.9	56
27	Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge. Journal of Virology, 2014, 88, 8278-8296.	3.4	56
28	Generation of Single-Copy T-DNA Transformants in Arabidopsis by the CRE/loxP Recombination-Mediated Resolution System. Plant Physiology, 2007, 145, 1171-1182.	4.8	55
29	Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nature Biotechnology, 2019, 37, 527-530.	17.5	51
30	Production of monoclonal antibodies with a controlled <i>N</i> â€glycosylation pattern in seeds of <i>Arabidopsis thaliana</i> . Plant Biotechnology Journal, 2011, 9, 179-192.	8.3	50
31	Expression of Antibody Fragments with a Controlled <i>N</i> -Glycosylation Pattern and Induction of Endoplasmic Reticulum-Derived Vesicles in Seeds of Arabidopsis Â. Plant Physiology, 2011, 155, 2036-2048.	4.8	50
32	Title is missing!. Molecular Breeding, 2002, 9, 271-282.	2.1	49
33	Qualitative and event-specific PCR real-time detection methods for StarLink maize. European Food Research and Technology, 2003, 216, 259-263.	3.3	48
34	Nonâ€food/feed seeds as biofactories for the highâ€yield production of recombinant pharmaceuticals. Plant Biotechnology Journal, 2011, 9, 911-921.	8.3	48
35	Cell Culture-Induced Gradual and Frequent Epigenetic Reprogramming of Invertedly Repeated Tobacco Transgene Epialleles Â. Plant Physiology, 2009, 149, 1493-1504.	4.8	47
36	The case for plant-made veterinary immunotherapeutics. Biotechnology Advances, 2016, 34, 597-604.	11.7	46

#	Article	IF	CITATIONS
37	Quantitative kinetic analysis of β-glucuronidase activities using a computer-directed microtiter plate reader. Plant Molecular Biology Reporter, 1993, 11, 21-31.	1.8	45
38	Highly efficient targeting and accumulation of a Fab fragment within the secretory pathway and apoplast of Arabidopsis thaliana. FEBS Journal, 2001, 268, 4251-4260.	0.2	44
39	Production of antibodies and antibody fragments in plants. Vaccine, 2001, 19, 2756-2761.	3.8	42
40	Using GlycoDelete to produce proteins lacking plant-specific N-glycan modification in seeds. Nature Biotechnology, 2015, 33, 1135-1137.	17.5	42
41	The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Research, 2006, 34, 2280-2293.	14.5	32
42	Fusion of an <scp>F</scp> c chain to a <scp>VHH</scp> boosts the accumulation levels in <i><scp>A</scp>rabidopsis</i> seeds. Plant Biotechnology Journal, 2013, 11, 1006-1016.	8.3	32
43	Different 5′ leader sequences modulate β-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants. Euphytica, 1995, 85, 209-216.	1.2	31
44	Recombinant Antibody Production in Arabidopsis Seeds Triggers an Unfolded Protein Response Â. Plant Physiology, 2013, 161, 1021-1033.	4.8	30
45	Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. Plant Biotechnology Journal, 2016, 14, 1791-1799.	8.3	29
46	High frequency of singleâ€copy Tâ€DNA transformants produced by floral dip in <i>CRE</i> â€expressing Arabidopsis plants. Plant Journal, 2009, 59, 517-527.	5.7	28
47	Introns reduce transitivity proportionally to their length, suggesting that silencing spreads along the pre-mRNA. Plant Journal, 2010, 64, 392-401.	5.7	28
48	Role of plant expression systems in antibody production for passive immunization. International Journal of Developmental Biology, 2013, 57, 587-593.	0.6	27
49	Recombinant IgA production for mucosal passive immunization, advancing beyond the hurdles. Cellular and Molecular Life Sciences, 2016, 73, 535-545.	5.4	27
50	Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 473.	3.6	26
51	The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Molecular Biology, 2007, 63, 533-543.	3.9	25
52	Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant Journal, 2008, 54, 1049-1062.	5.7	25
53	Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana. Plant Cell Reports, 2009, 28, 1509-1520.	5.6	24
54	Production of Camel-Like Antibodies in Plants. Methods in Molecular Biology, 2012, 911, 305-324.	0.9	21

#	Article	IF	CITATIONS
55	Tobacco seeds as efficient production platform for a biologically active anti-HBsAg monoclonal antibody. Transgenic Research, 2015, 24, 897-909.	2.4	21
56	Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid system. FEBS Letters, 2000, 467, 316-320.	2.8	20
57	Comparison of <scp>VHH</scp> â€Fc antibody production in <i><scp>A</scp>rabidopsis thaliana</i> , <i><scp>N</scp>icotiana benthamiana</i> and <i><scp>P</scp>ichia pastoris</i> . Plant Biotechnology Journal, 2015, 13, 938-947.	8.3	20
58	Transitive <scp>RNA</scp> silencing signals induce cytosine methylation of a transgenic but not an endogenous target. Plant Journal, 2013, 74, 867-879.	5.7	19
59	In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS ONE, 2018, 13, e0204222.	2.5	19
60	Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Current Opinion in Biotechnology, 2020, 61, 96-101.	6.6	18
61	The Efficiency of <i>Arabidopsis thaliana</i> Floral Dip Transformation Is Determined Not Only by the <i>Agrobacterium</i> Strain Used but Also by the Physiology and the Ecotype of the Dipped Plant. Molecular Plant-Microbe Interactions, 2013, 26, 823-832.	2.6	16
62	Isolation and characterization of recombinant antibody fragments against CDC2a from Arabidopsis thaliana. FEBS Journal, 2000, 267, 6775-6783.	0.2	15
63	Agrobacterium Tumefaciens-Mediated Transformation: Patterns of T-Dna Integration Into the Host Genome. , 2008, , 441-481.		15
64	Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics, 2011, 6, 650-660.	2.7	15
65	Boosting In Planta Production of Antigens Derived from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Subsequent Evaluation of Their Immunogenicity. PLoS ONE, 2014, 9, e91386.	2.5	15
66	A technology platform for the fast production of monoclonal recombinant antibodies against plant proteins and peptides. Journal of Immunological Methods, 2004, 294, 181-187.	1.4	14
67	Siteâ€specific <scp>T</scp> – <scp>DNA</scp> integration in <i><scp>A</scp>rabidopsis thaliana</i> mediated by the combined action of <scp>CRE</scp> recombinase and Ï• <scp>C</scp> 31 integrase. Plant Journal, 2013, 75, 172-184.	5.7	14
68	Generation of VHH antibodies against the Arabidopsis thaliana seed storage proteins. Plant Molecular Biology, 2014, 84, 83-93.	3.9	14
69	Use of phage display for isolation and characterization of single-chain variable fragments against dihydroflavonol 4-reductase from Petunia hybrida. FEBS Letters, 1997, 403, 116-122.	2.8	13
70	High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Research, 2017, 26, 775-789.	2.4	12
71	Evaluating single-domain antibodies as carriers for targeted vaccine delivery to the small intestinal epithelium. Journal of Controlled Release, 2020, 321, 416-429.	9.9	12

#	Article	IF	CITATIONS
73	Genetic and epigenetic aspects of somaclonal variation: flower colour bud sports in azalea, a case study. South African Journal of Botany, 2003, 69, 117-128.	2.5	10
74	Russell-Like Bodies in Plant Seeds Share Common Features With Prolamin Bodies and Occur Upon Recombinant Protein Production. Frontiers in Plant Science, 2019, 10, 777.	3.6	10
75	Stability of the T-DNA flanking regions in transgenic Arabidopsis thaliana plants under influence of abiotic stress and cultivation practices. Plant Cell Reports, 2008, 27, 749-757.	5.6	9
76	Characterization of the single-chain Fv-Fc antibody MBP10 produced in Arabidopsis alg3 mutant seeds. Transgenic Research, 2011, 20, 1033-1042.	2.4	9
77	T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. Planta, 2013, 238, 1025-1037.	3.2	8
78	Introduction of silencing-inducing transgenes does not affect expression of known transcripts. FEBS Letters, 2006, 580, 4154-4159.	2.8	7
79	Sequence stability of the T-DNA – plant junctions in tissue culture in Arabidopsis transgenic lines. Plant Cell Reports, 2006, 25, 1362-1368.	5.6	6
80	Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture. Epigenetics, 2013, 8, 666-676.	2.7	5
81	Plant expression systems for early stage discovery and development of lead therapeutic antibodies. Human Antibodies, 2015, 23, 37-43.	1.5	5
82	Transformation strategies for stable expression of complex heteroâ€multimeric proteins like secretory immunoglobulin A in plants. Plant Biotechnology Journal, 2019, 17, 1760-1769.	8.3	5
83	Production of Antibody Fragments in Arabidopsis Seeds. Methods in Molecular Biology, 2009, 483, 89-101.	0.9	4
84	A two-amino acid mutation in murine IgA enables downstream processing and purification on staphylococcal superantigen-like protein 7. Journal of Biotechnology, 2019, 294, 26-29.	3.8	4
85	Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology. Plant Molecular Biology, 2020, 103, 597-608.	3.9	4
86	Plants as bioreactors for protein production: avoiding the problem of transgene silencing. , 2000, , 227-239.		4
87	High Frequency of Single-Copy T-DNA Transformants Produced After Floral Dip in CRE-Expressing Arabidopsis Plants. Methods in Molecular Biology, 2012, 847, 317-333.	0.9	2
88	Detection and Investigation of Transitive Gene Silencing in Plants. Methods in Molecular Biology, 2014, 1112, 219-241.	0.9	0